Evaluating agar-plating and dilution-to-extinction isolation methods for generating oak-associated microbial culture collections.

Alejandra Ordonez, Usman Hussain, Marine C Cambon, Peter N Golyshin, Jim Downie, James E McDonald
Author Information
  1. Alejandra Ordonez: School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2DG, United Kingdom. ORCID
  2. Usman Hussain: School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2DG, United Kingdom. ORCID
  3. Marine C Cambon: School of Biosciences, Institute of Microbiology and Infection, Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom. ORCID
  4. Peter N Golyshin: School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2DG, United Kingdom. ORCID
  5. Jim Downie: School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2DG, United Kingdom. ORCID
  6. James E McDonald: School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2DG, United Kingdom. ORCID

Abstract

Microbial isolation methods are crucial for producing comprehensive microbial culture collections that reflect the richness and diversity of natural microbiotas. Few studies have focused on isolation of plant-associated microbiota, with even less focus on forest trees. Here, we tested two isolation methods, (i) agar plating and (ii) dilution-to-extinction, for isolation of microbiota from leaf, stem, and root/rhizosphere tissues of oak trees. Microbial isolates obtained (culture-dependent) and the endogenous oak microbiota of the source tissue samples (culture-independent) were characterized by 16S rRNA gene and ITS community profiling. We found that the type of growth medium, incubation conditions, and sample type inoculated onto agar influenced the number of isolates and taxonomic richness of the isolates obtained. Most bacterial and fungal ASVs obtained from isolation-based approaches were only obtained using one of the two isolation methods, with only 12% of the ASVs detected in both. Moreover, the isolation methods captured microorganisms not detected by culture-independent analysis of the microbiota, suggesting these approaches can complement culture-independent analysis by enriching low-abundant taxa. Our results suggest that dilution-to-extinction and agar-plating approaches captured distinct fractions of the oak microbiota, and that a combination of both isolation methods was required to produce taxonomically richer microbial culture collections.

Keywords

References

  1. Microbiome. 2018 Jan 30;6(1):21 [PMID: 29378627]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. Appl Environ Microbiol. 2013 Apr;79(8):2519-26 [PMID: 23377949]
  4. ISME Commun. 2024 May 13;4(1):ycae073 [PMID: 38808121]
  5. Springerplus. 2016 Mar 15;5:330 [PMID: 27066355]
  6. Nat Microbiol. 2020 Jan;5(1):126-140 [PMID: 31740763]
  7. Gut Microbes. 2019;10(1):77-91 [PMID: 30118379]
  8. Biosci Biotechnol Biochem. 2019 Mar;83(3):569-577 [PMID: 30475153]
  9. Nat Rev Microbiol. 2018 Jun;16(6):383-390 [PMID: 29599459]
  10. Microb Genom. 2019 Jan;5(1): [PMID: 30625111]
  11. Front Microbiol. 2023 Apr 11;14:1098150 [PMID: 37113232]
  12. Front Microbiol. 2018 Jun 05;9:1006 [PMID: 29922245]
  13. FEMS Microbiol Ecol. 2024 Mar 12;100(4): [PMID: 38503562]
  14. Appl Environ Microbiol. 2000 Dec;66(12):5488-91 [PMID: 11097934]
  15. Front Plant Sci. 2018 Jan 04;8:2191 [PMID: 29354144]
  16. Nat Protoc. 2021 Feb;16(2):988-1012 [PMID: 33442053]
  17. FEMS Microbiol Ecol. 2007 Jun;60(3):521-33 [PMID: 17466028]
  18. Nat Rev Microbiol. 2019 Dec;17(12):725-741 [PMID: 31548653]
  19. PLoS One. 2013;8(2):e57923 [PMID: 23460914]
  20. Environ Microbiol. 2021 Apr;23(4):1842-1857 [PMID: 32686214]
  21. New Phytol. 2015 Mar;205(4):1424-1430 [PMID: 25422041]
  22. J Adv Res. 2019 Apr 19;19:15-27 [PMID: 31341666]
  23. Cell Host Microbe. 2017 Aug 9;22(2):142-155 [PMID: 28799900]
  24. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  25. Microbiome. 2022 Oct 25;10(1):183 [PMID: 36280858]
  26. Appl Environ Microbiol. 2022 Mar 22;88(6):e0253721 [PMID: 35138928]
  27. Clin Microbiol Infect. 2012 Dec;18(12):1185-93 [PMID: 23033984]
  28. Genome Med. 2016 Jul 01;8(1):72 [PMID: 27363992]
  29. ISME J. 2022 Dec;16(12):2712-2724 [PMID: 35987782]
  30. PLoS One. 2014 Aug 21;9(8):e105515 [PMID: 25144665]
  31. Nat Commun. 2024 Jan 2;15(1):23 [PMID: 38167850]
  32. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  33. Nat Rev Microbiol. 2021 Apr;19(4):225-240 [PMID: 33093661]
  34. Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264 [PMID: 30371820]
  35. ISME J. 2018 Feb;12(2):386-399 [PMID: 29028005]
  36. FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7 [PMID: 20487025]
  37. Syst Appl Microbiol. 2016 Oct;39(7):484-490 [PMID: 27553488]
  38. Nat Biotechnol. 2020 Mar;38(3):276-278 [PMID: 32055031]
  39. Bioinformatics. 2017 Aug 15;33(16):2580-2582 [PMID: 28379341]
  40. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  41. ISME J. 2024 Jan 8;18(1): [PMID: 38952008]
  42. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  43. Environ Microbiol. 2010 Aug;12(8):2165-79 [PMID: 21966911]
  44. Nat Microbiol. 2021 Dec;6(12):1537-1548 [PMID: 34819644]
  45. Front Microbiol. 2024 May 31;15:1391863 [PMID: 38881652]
  46. Nat Biotechnol. 2023 Oct;41(10):1424-1433 [PMID: 36805559]
  47. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  48. Stud Mycol. 2012 Mar 15;71(1):1-210 [PMID: 22685364]
  49. FEMS Microbiol Ecol. 2016 Oct;92(10): [PMID: 27451418]
  50. Bioinformatics. 2019 Sep 15;35(18):3224-3231 [PMID: 30689741]
  51. Environ Microbiome. 2025 Jan 28;20(1):14 [PMID: 39875992]
  52. NPJ Biofilms Microbiomes. 2023 Sep 22;9(1):67 [PMID: 37736746]
  53. Cell. 2018 Nov 1;175(4):973-983.e14 [PMID: 30388454]
  54. Nat Rev Microbiol. 2023 Aug;21(8):487-501 [PMID: 36941408]
  55. Microbiome. 2022 May 12;10(1):76 [PMID: 35546409]
  56. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  57. Sci Rep. 2019 Jul 17;9(1):10389 [PMID: 31316117]
  58. Int J Syst Evol Microbiol. 2010 Aug;60(Pt 8):1740-1744 [PMID: 19734279]
  59. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6252-7 [PMID: 21436049]
  60. PeerJ. 2019 Oct 29;7:e7876 [PMID: 31681511]
  61. Front Plant Sci. 2020 Jan 21;10:1708 [PMID: 32038682]
  62. Nature. 2015 Dec 17;528(7582):340-1 [PMID: 26633626]
  63. J Basic Microbiol. 2020 Aug;60(8):730-734 [PMID: 32529642]
  64. Environ Microbiol Rep. 2016 Jun;8(3):388-98 [PMID: 27038229]
  65. PLoS Comput Biol. 2017 Feb 21;13(2):e1005404 [PMID: 28222096]
  66. Nat Biotechnol. 2017 Sep 12;35(9):833-844 [PMID: 28898207]
  67. Nat Biotechnol. 2017 Apr 11;35(4):316-319 [PMID: 28398311]
  68. ISME J. 2022 Mar;16(3):774-787 [PMID: 34593997]
  69. Nat Methods. 2018 Jul;15(7):475-476 [PMID: 29967506]
  70. Nat Commun. 2023 Dec 8;14(1):8126 [PMID: 38065941]
  71. Nat Commun. 2022 Dec 22;13(1):7890 [PMID: 36550095]
  72. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  73. Molecules. 2019 May 21;24(10): [PMID: 31117282]
  74. Nat Commun. 2014 Aug 28;5:4714 [PMID: 25163406]
  75. ISME J. 2018 Mar;12(3):669-680 [PMID: 29367665]

Word Cloud

Created with Highcharts 10.0.0isolationmethodsmicrobiotamicrobialculturedilution-to-extinctionoakobtainedcollectionsagarisolatesculture-independentapproachesMicrobialrichnesstreestwoplatingtypeASVsdetectedcapturedanalysisagar-platingcrucialproducingcomprehensivereflectdiversitynaturalmicrobiotasstudiesfocusedplant-associatedevenlessfocusforesttestediileafstemroot/rhizospheretissuesculture-dependentendogenoussourcetissuesamplescharacterized16SrRNAgeneITScommunityprofilingfoundgrowthmediumincubationconditionssampleinoculatedontoinfluencednumbertaxonomicbacterialfungalisolation-basedusingone12%Moreovermicroorganismssuggestingcancomplementenrichinglow-abundanttaxaresultssuggestdistinctfractionscombinationrequiredproducetaxonomicallyricherEvaluatinggeneratingoak-associatedcollection

Similar Articles

Cited By