Asymmetrical evolution of cross inhibition in zooplankton: insights from contrasting phosphorus limitation and salinization exposure sequences.

Libin Zhou, Kimberley D Lemmen, Shuaiying Zhao, Steven A J Declerck
Author Information
  1. Libin Zhou: Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China. ORCID
  2. Kimberley D Lemmen: Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
  3. Shuaiying Zhao: Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
  4. Steven A J Declerck: Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Abstract

Understanding the evolutionary responses of organisms to multiple stressors is crucial for predicting the ecological consequences of intensified anthropogenic activities. While previous studies have documented the effects of selection history on organisms' abilities to cope with new stressors, the impact of the sequence in which stressors occur on evolutionary outcomes remains less understood. In this study, we examined the evolutionary responses of a metazoan rotifer species to two prevalent freshwater stressors: nutrient limitation and increased salinization. We subjected rotifer populations with distinct selection histories (salt-adapted, low phosphorus-adapted and ancestral clones) to a reciprocal common garden experiment and monitored their population growth rates. Our results revealed an asymmetric evolutionary response to phosphorus (P) limitation and increased salinity. Specifically, adaptation to low P conditions reduced rotifer tolerance to increased salinity, whereas adaptation to saline conditions did not show such cross-inhibitory effects. Instead, the addition of moderate concentrations of salt enhanced the growth of the salt-adapted population in low P conditions, potentially as a consequence of evolved cross-tolerance. Our findings, therefore, underscore the importance of considering historical stressor regimes to improve our understanding and predictions of organismal responses to multiple stressors and also have significant implications for ecosystem management.

Keywords

References

  1. Trends Microbiol. 2016 Mar;24(3):209-223 [PMID: 26705697]
  2. Water Res. 2017 Nov 1;124:618-629 [PMID: 28822342]
  3. Nat Ecol Evol. 2020 Aug;4(8):1060-1068 [PMID: 32541802]
  4. Ann Rev Mar Sci. 2016;8:357-78 [PMID: 26359817]
  5. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509904]
  6. Glob Chang Biol. 2022 Mar;28(5):1740-1752 [PMID: 33829610]
  7. Ecology. 2023 Jan;104(1):e3853 [PMID: 36054549]
  8. Trends Ecol Evol. 2009 Apr;24(4):201-7 [PMID: 19246117]
  9. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120079 [PMID: 23209161]
  10. Evol Appl. 2017 Jul 04;10(8):802-812 [PMID: 29151872]
  11. Mol Biol Evol. 2013 Mar;30(3):573-88 [PMID: 23125229]
  12. Appl Environ Microbiol. 2012 Apr;78(8):2602-12 [PMID: 22307309]
  13. Proc Biol Sci. 2020 May 13;287(1926):20200421 [PMID: 32370677]
  14. Ecol Lett. 2008 Dec;11(12):1304-15 [PMID: 19046359]
  15. Ecol Lett. 2022 Feb;25(2):255-263 [PMID: 34854211]
  16. Evol Appl. 2016 Jun 30;9(9):1147-1155 [PMID: 27695522]
  17. Integr Comp Biol. 2013 Oct;53(4):597-608 [PMID: 23615362]
  18. Water Res. 2020 Apr 15;173:115579 [PMID: 32059127]
  19. J Exp Biol. 2023 Jun 1;226(11): [PMID: 37288646]
  20. Nature. 2004 May 13;429(6988):171-4 [PMID: 15141209]
  21. Trends Ecol Evol. 2022 May;37(5):440-453 [PMID: 35058082]
  22. Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2205495119 [PMID: 35914141]
  23. Ecol Appl. 2017 Apr;27(3):833-844 [PMID: 27992971]
  24. J Environ Manage. 2021 Jan 1;277:111383 [PMID: 33035935]
  25. Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):419-29 [PMID: 18539088]
  26. Nat Clim Chang. 2023 May;13(5):478-483 [PMID: 37193246]
  27. Plant Physiol. 2017 Dec;175(4):1543-1559 [PMID: 29051196]
  28. Ecol Lett. 2012 Aug;15(8):794-802 [PMID: 22583985]
  29. Trends Ecol Evol. 2021 May;36(5):402-410 [PMID: 33583600]
  30. Ecol Lett. 2019 Nov;22(11):1860-1869 [PMID: 31429516]
  31. Environ Pollut. 2023 Aug 1;330:121767 [PMID: 37146869]
  32. Ecol Lett. 2006 Jul;9(7):774-9 [PMID: 16796566]
  33. J Evol Biol. 2017 Oct;30(10):1872-1883 [PMID: 28718986]
  34. Glob Chang Biol. 2023 Mar;29(5):1248-1266 [PMID: 36366939]
  35. Environ Pollut. 2017 Mar;222:367-373 [PMID: 28065573]
  36. Ecol Lett. 2023 Sep;26 Suppl 1:S3-S4 [PMID: 37840021]
  37. Mol Ecol. 2013 Feb;22(3):699-708 [PMID: 22420446]
  38. Ecol Lett. 2022 Jun;25(6):1483-1496 [PMID: 35478314]
  39. Front Microbiol. 2018 Feb 09;9:172 [PMID: 29479344]
  40. Am Nat. 2009 May;173(5):579-88 [PMID: 19272016]
  41. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17482-17490 [PMID: 32641501]
  42. J R Soc Interface. 2023 Jan;20(198):20220472 [PMID: 36596454]
  43. Ecol Lett. 2015 Jun;18(6):553-62 [PMID: 25913306]
  44. Sci Total Environ. 2022 May 15;821:153322 [PMID: 35074373]
  45. Proc Biol Sci. 2005 Jul 22;272(1571):1415-25 [PMID: 16011915]
  46. Innovation (Camb). 2020 Aug 01;1(2):100030 [PMID: 34557708]
  47. Oecologia. 2003 Aug;136(3):336-46 [PMID: 12827486]
  48. Ecol Lett. 2014 Mar;17(3):360-8 [PMID: 24400978]
  49. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4453-4458 [PMID: 28396392]
  50. Environ Sci Technol. 2017 Mar 7;51(5):3084-3092 [PMID: 28177231]
  51. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  52. Environ Pollut. 1999;100(1-3):179-96 [PMID: 15093117]
  53. Trends Ecol Evol. 2021 Jan;36(1):39-48 [PMID: 33032863]
  54. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509914]
  55. J Exp Biol. 2011 Mar 1;214(Pt 5):829-35 [PMID: 21307070]
  56. Science. 2019 Nov 15;366(6467):886-890 [PMID: 31727838]
  57. Proc Biol Sci. 2025 Mar;292(2042):20243064 [PMID: 40041961]
  58. Nat Commun. 2021 Jul 9;12(1):4232 [PMID: 34244500]
  59. Trends Ecol Evol. 2017 Feb;32(2):108-117 [PMID: 28017452]
  60. Sci Total Environ. 2024 Nov 1;949:174998 [PMID: 39053528]
  61. Trends Ecol Evol. 2023 Jun;38(6):568-578 [PMID: 36906435]
  62. Proc Biol Sci. 2012 Nov 7;279(1746):4322-33 [PMID: 22915669]
  63. Glob Chang Biol. 2016 Jan;22(1):180-9 [PMID: 26149723]
  64. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  65. Trends Ecol Evol. 2019 Apr;34(4):369-383 [PMID: 30857757]
  66. Environ Sci Pollut Res Int. 2011 May;18(4):655-62 [PMID: 21069573]
  67. PeerJ. 2018 May 23;6:e4794 [PMID: 29844961]
  68. Environ Sci Technol. 2015 Aug 4;49(15):9298-307 [PMID: 26130190]
  69. Ecol Lett. 2023 Sep;26 Suppl 1:S152-S167 [PMID: 37840028]
  70. J Evol Biol. 2012 Apr;25(4):625-33 [PMID: 22296332]
  71. Proc Biol Sci. 2022 Jun 8;289(1976):20220308 [PMID: 35673862]
  72. Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217276120 [PMID: 36730191]
  73. Ecol Lett. 2023 Sep;26 Suppl 1:S109-S126 [PMID: 37840025]
  74. Ecol Evol. 2024 Mar 12;14(3):e11069 [PMID: 38481759]

Grants

  1. /National Natural Science Foundation of China

MeSH Term

Animals
Phosphorus
Zooplankton
Salinity
Biological Evolution
Rotifera
Adaptation, Physiological
Stress, Physiological

Chemicals

Phosphorus

Word Cloud

Created with Highcharts 10.0.0evolutionarystressorsrotiferlimitationresponsesincreasedsalinizationlowphosphorusPadaptationconditionsmultipleeffectsselectionsalt-adaptedpopulationgrowthsalinitycross-tolerancecrossinhibitionUnderstandingorganismscrucialpredictingecologicalconsequencesintensifiedanthropogenicactivitiespreviousstudiesdocumentedhistoryorganisms'abilitiescopenewimpactsequenceoccuroutcomesremainslessunderstoodstudyexaminedmetazoanspeciestwoprevalentfreshwaterstressors:nutrientsubjectedpopulationsdistincthistoriesphosphorus-adaptedancestralclonesreciprocalcommongardenexperimentmonitoredratesresultsrevealedasymmetricresponseSpecificallyreducedtolerancewhereassalineshowcross-inhibitoryInsteadadditionmoderateconcentrationssaltenhancedpotentiallyconsequenceevolvedfindingsthereforeunderscoreimportanceconsideringhistoricalstressorregimesimproveunderstandingpredictionsorganismalalsosignificantimplicationsecosystemmanagementAsymmetricalevolutionzooplankton:insightscontrastingexposuresequencesrapid

Similar Articles

Cited By