Simulated Climate Change Enhances Microbial Drought Resilience in Ethiopian Croplands but Not Forests.

Lettice C Hicks, Ainara Leizeaga, Carla Cruz Paredes, Albert C Brangar��, D��niel T��jmel, Menale Wondie, Hans Sand��n, Johannes Rousk
Author Information
  1. Lettice C Hicks: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden. ORCID
  2. Ainara Leizeaga: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden.
  3. Carla Cruz Paredes: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden.
  4. Albert C Brangar��: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden.
  5. D��niel T��jmel: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden. ORCID
  6. Menale Wondie: Amhara Agricultural Research Institute (ARARI), Bahir Dar, Ethiopia.
  7. Hans Sand��n: Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
  8. Johannes Rousk: Microbial Ecology, Department of Biology, Lund University, Lund, Sweden. ORCID

Abstract

Climate change and land-use change represent a dual threat to terrestrial ecosystem functioning. In the tropics, forest conversion to agriculture is occurring alongside warming and more pronounced periods of drought. Rainfall after drought induces enormous dynamics in microbial growth (potential soil carbon storage) and respiration (determining carbon loss), affecting the ecosystem carbon budget. We investigated how legacies of drought and warming affected microbial functional (growth and respiration) and structural (16S and ITS amplicon) responses after drought. Rain shelters and open-top chambers (OTCs) were used to simulate drought and warming in tropical cropland and forest sites in Ethiopia. Rain shelters reduced soil moisture by up to 25���vol%, with a bigger effect in the forest, while OTCs increased soil temperature by up to 6��C in the cropland and also reduced soil moisture but had no clear effect in the forest. Soils from these field treatments were then exposed to a standardized drought cycle to test how microbial community traits had been shaped by the different climate legacies. Microbial growth started increasing immediately after rewetting in all soils, reflecting a resilient response and indicating that microbial communities perceived the perturbation as relatively mild. Fungi recovered faster than bacteria, and the recovery of fungal growth was generally accelerated in soils with a legacy of drought. Microbial community functions and structures were both more responsive in the cropland than in forest soils, and a legacy of drought particularly enhanced microbial growth and respiration responses in the cropland but not the forest. Microbial communities in cropland soils also used carbon with a higher efficiency after rewetting. Together, these results suggest contrasting feedbacks to climate change determined by land use, where croplands will be associated with mitigated losses of soil carbon by microorganisms in response to future cycles of drought, compared to forests where soil carbon reservoirs remain more sensitive.

Keywords

References

  1. Appl Environ Microbiol. 2009 Mar;75(6):1589-96 [PMID: 19151179]
  2. Front Microbiol. 2013 Sep 05;4:265 [PMID: 24032030]
  3. ISME J. 2013 Feb;7(2):384-94 [PMID: 23151641]
  4. Mycologia. 2006 Nov-Dec;98(6):885-95 [PMID: 17486965]
  5. Nat Ecol Evol. 2024 Nov;8(11):2018-2026 [PMID: 39294403]
  6. New Phytol. 2014 Feb;201(3):916-927 [PMID: 24171922]
  7. Ecology. 2007 Jun;88(6):1386-94 [PMID: 17601131]
  8. Sci Total Environ. 2016 May 1;551-552:404-14 [PMID: 26881731]
  9. Glob Chang Biol. 2019 Mar;25(3):1005-1015 [PMID: 30387912]
  10. Ecology. 2012 Apr;93(4):930-8 [PMID: 22690643]
  11. Ecol Lett. 2015 Jul;18(7):612-25 [PMID: 25950733]
  12. Science. 2002 Dec 13;298(5601):2173-6 [PMID: 12481133]
  13. Glob Chang Biol. 2022 Jun;28(11):3486-3488 [PMID: 35352861]
  14. Trends Ecol Evol. 1998 Jun 1;13(6):232-5 [PMID: 21238277]
  15. ISME J. 2020 Jun;14(6):1520-1532 [PMID: 32203117]
  16. Glob Chang Biol. 2015 Jun;21(6):2111-21 [PMID: 25641092]
  17. Appl Environ Microbiol. 2012 Dec;78(24):8587-94 [PMID: 23023755]
  18. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  19. Microbiol Mol Biol Rev. 2021 Mar 31;85(2): [PMID: 33789927]
  20. Appl Environ Microbiol. 2021 Feb 26;87(6): [PMID: 33452025]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. Nat Commun. 2018 Aug 2;9(1):3033 [PMID: 30072764]
  23. Nat Commun. 2021 Sep 6;12(1):5308 [PMID: 34489463]
  24. New Phytol. 2019 Oct;224(1):132-145 [PMID: 31218693]
  25. Ecol Lett. 2014 May;17(5):547-55 [PMID: 24529215]
  26. Microb Ecol. 2020 Apr;79(3):662-674 [PMID: 31482287]
  27. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10931-6 [PMID: 22715291]
  28. Glob Chang Biol. 2017 Oct;23(10):4185-4203 [PMID: 28614633]
  29. FEMS Microbiol Ecol. 2020 Feb 1;96(2): [PMID: 31868883]
  30. Ecol Evol. 2017 Jan 09;7(3):855-862 [PMID: 28168022]
  31. mBio. 2024 May 8;15(5):e0045524 [PMID: 38526088]
  32. New Phytol. 2009 Dec;184(4):950-61 [PMID: 19843305]
  33. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  34. ISME J. 2018 Apr;12(4):1061-1071 [PMID: 29476139]
  35. Environ Microbiol. 2017 Aug;19(8):3175-3185 [PMID: 28557350]
  36. Nat Microbiol. 2017 Jul 25;2:17105 [PMID: 28741607]
  37. Nucleic Acids Res. 2024 Jan 5;52(D1):D791-D797 [PMID: 37953409]
  38. Izv Akad Nauk Ser Biol. 2007 May-Jun;(3):296-302 [PMID: 17853691]
  39. Annu Rev Microbiol. 1983;37:189-216 [PMID: 6357051]
  40. Ann Microbiol. 2015;65(3):1627-1637 [PMID: 26273241]
  41. Sci Rep. 2018 Aug 23;8(1):12696 [PMID: 30140025]
  42. Science. 2023 Apr 14;380(6641):187-191 [PMID: 37053316]
  43. Tree Physiol. 2007 Jul;27(7):929-40 [PMID: 17403645]
  44. ISME J. 2013 Nov;7(11):2229-41 [PMID: 23823489]
  45. ISME J. 2010 Oct;4(10):1340-51 [PMID: 20445636]
  46. Nat Ecol Evol. 2019 Jul;3(7):1064-1069 [PMID: 31209289]

Grants

  1. 2016-06327/Vetenskapsr��det
  2. 2020-03858/Vetenskapsr��det
  3. CTS 22:2131/Carl Tryggers Stiftelse f��r Vetenskaplig Forskning
  4. 2022-00672/Svenska Forskningsr��det Formas
  5. 2023-02438/Svenska Forskningsr��det Formas
  6. KAW 2022.0175/Knut och Alice Wallenbergs Stiftelse
  7. KAW 2023.0384/Knut och Alice Wallenbergs Stiftelse

MeSH Term

Droughts
Ethiopia
Climate Change
Soil Microbiology
Forests
Soil
Fungi
Bacteria
Microbiota
Crops, Agricultural
Rain

Chemicals

Soil

Word Cloud

Created with Highcharts 10.0.0droughtsoilcarbonforestmicrobialchangegrowthcroplandwarmingclimateMicrobialsoilsrespirationcommunityClimateecosystemlegaciesresponsesRainsheltersOTCsusedtropicalreducedmoistureeffectalsorewettingresponsecommunitieslegacyland-userepresentdualthreatterrestrialfunctioningtropicsconversionagricultureoccurringalongsidepronouncedperiodsRainfallinducesenormousdynamicspotentialstoragedetermininglossaffectingbudgetinvestigatedaffectedfunctionalstructural16SITSampliconopen-topchamberssimulatesitesEthiopia25���vol%biggerincreasedtemperature6��CclearSoilsfieldtreatmentsexposedstandardizedcycletesttraitsshapeddifferentstartedincreasingimmediatelyreflectingresilientindicatingperceivedperturbationrelativelymildFungirecoveredfasterbacteriarecoveryfungalgenerallyacceleratedfunctionsstructuresresponsiveparticularlyenhancedhigherefficiencyTogetherresultssuggestcontrastingfeedbacksdeterminedlandusecroplandswillassociatedmitigatedlossesmicroorganismsfuturecyclescomparedforestsreservoirsremainsensitiveSimulatedChangeEnhancesDroughtResilienceEthiopianCroplandsForestsland���usestructurefunctioncyclingecosystems

Similar Articles

Cited By