3D evolutionarily designed metamaterials for scattering maximization.

Dmitry Dobrykh, Konstantin Grotov, Anna Mikhailovskaya, Dmytro Vovchuk, Vladyslav Tkach, Mykola Khobzei, Anton Kharchevskii, Aviel Glam, Pavel Ginzburg
Author Information
  1. Dmitry Dobrykh: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel. dmitryd@mail.tau.ac.il. ORCID
  2. Konstantin Grotov: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
  3. Anna Mikhailovskaya: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel. ORCID
  4. Dmytro Vovchuk: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel. ORCID
  5. Vladyslav Tkach: Institute of Telecommunications, Riga Technical University, Riga, LV-1048, Latvia.
  6. Mykola Khobzei: Institute of Telecommunications, Riga Technical University, Riga, LV-1048, Latvia.
  7. Anton Kharchevskii: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
  8. Aviel Glam: Rafael Advanced Defense Systems Ltd., Haifa, Israel.
  9. Pavel Ginzburg: School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.

Abstract

The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators. These structures demonstrate a broadband end-fire scattering cross-section exceeding 1���m�� at 10���GHz and, despite their compact footprint, achieve over 10% fractional bandwidth, meeting essential radar requirements for high-range resolution. While scattering cross-section and bandwidth are typically contradictory in resonant structures, this trend is circumvented by applying the resonance cascading principle, wherein a series of closely spaced, spectrally aligned resonant multipoles create a coherent response. The resonance cascading is engineered with the aid of multi-objective optimization, implemented on top of a genetic algorithm, operating in a large search space, encompassing over 100 independent variables. Experimentally realized parameters match typical scattering cross-sections of large airborne targets. Consequently, these performance characteristics enable the exploration of highly scattering structures as identifiers for small airborne targets, supporting effective radar-based air traffic monitoring in civilian applications, which we demonstrate through outdoor experiments using the DJI Mini 2 drone.

References

  1. Adv Mater. 2019 Nov;31(48):e1904845 [PMID: 31608516]
  2. Sci Rep. 2021 Jul 9;11(1):14187 [PMID: 34244554]
  3. Sci Rep. 2021 May 5;11(1):9571 [PMID: 33953249]
  4. Evol Comput. 2003 Spring;11(1):1-18 [PMID: 12804094]
  5. Opt Express. 2019 Sep 30;27(20):27523-27535 [PMID: 31684518]
  6. Sci Adv. 2018 Jun 01;4(6):eaar4206 [PMID: 29868640]
  7. Sensors (Basel). 2023 Dec 26;24(1): [PMID: 38202987]
  8. Adv Mater. 2024 Feb;36(8):e2305254 [PMID: 38050899]
  9. Science. 2006 Nov 10;314(5801):977-80 [PMID: 17053110]
  10. Front Optoelectron. 2023 Dec 29;16(1):48 [PMID: 38157127]
  11. Adv Sci (Weinh). 2022 Nov;9(33):e2203747 [PMID: 36117118]
  12. Nat Commun. 2023 Feb 22;14(1):989 [PMID: 36813789]
  13. Light Sci Appl. 2022 Aug 1;11(1):242 [PMID: 35915076]
  14. Phys Rev Lett. 2000 May 1;84(18):4184-7 [PMID: 10990641]
  15. Appl Opt. 1971 Jul 1;10(7):1559-66 [PMID: 20111161]
  16. Nat Commun. 2019 Mar 6;10(1):1082 [PMID: 30842417]
  17. Phys Rev Lett. 2019 Feb 15;122(6):063901 [PMID: 30822094]
  18. Chem Soc Rev. 2011 May;40(5):2494-507 [PMID: 21234491]
  19. Nat Mater. 2012 Nov;11(11):917-24 [PMID: 23089997]

Word Cloud

Created with Highcharts 10.0.0scatteringradarcross-sectionstructuresdroneairtrafficdetectioncivilianapplicationsevolutionarilydesignedmetamaterialsdemonstratebandwidthresonantresonancecascadinglargeairbornetargetsrapidgrowthcallsenhancedsurveillancesystemsensurereliablechallengingconditionsIncreasingcangreatlyimprovereliabilityintroduceconceptformmultilayerstacksarraysfeaturingstronglycoupledelectricmagneticresonatorsbroadbandend-fireexceeding1���m��10���GHzdespitecompactfootprintachieve10%fractionalmeetingessentialrequirementshigh-rangeresolutiontypicallycontradictorytrendcircumventedapplyingprinciplewhereinseriescloselyspacedspectrallyalignedmultipolescreatecoherentresponseengineeredaidmulti-objectiveoptimizationimplementedtopgeneticalgorithmoperatingsearchspaceencompassing100independentvariablesExperimentallyrealizedparametersmatchtypicalcross-sectionsConsequentlyperformancecharacteristicsenableexplorationhighlyidentifierssmallsupportingeffectiveradar-basedmonitoringoutdoorexperimentsusingDJIMini23Dmaximization

Similar Articles

Cited By