Auditory sequence learning with degraded input: children with cochlear implants ('nature effect') compared to children from low and high socio-economic backgrounds ('nurture effect').

Shira Cohen, Ronen Perez, Liat Kishon-Rabin
Author Information
  1. Shira Cohen: The Department of Communication Disorders, Steyer School of Health Professions, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
  2. Ronen Perez: Department of Otolaryngology and Head and Neck Surgery, Shaare Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
  3. Liat Kishon-Rabin: The Department of Communication Disorders, Steyer School of Health Professions, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel. lrabin@tauex.tau.ac.il.

Abstract

Implicit sequence learning (SL) is crucial for language acquisition and has been studied in children with organic language deficits (e.g., specific language impairment). However, language delays are also seen in children with non-organic deficits, such as those with hearing loss or from low socioeconomic status (SES). While some children with cochlear implants (CI) develop strong language skills, variability in performance suggests that degraded auditory input (nature) may affect SL. Low SES children typically experience language delays due to environmental deprivation (nurture). The purpose of this study was to investigate nature versus nurture effects on auditory SL. A total of 100 participants were divided into normal hearing (NH) children, young adults, CI children from high-moderate SES, and NH children from low SES who were tested with two Serial Reaction Time (SRT) tasks with speech and environmental sounds, and with cognitive tests. Results showed SL for speech and nonspeech stimuli for all participants, suggesting that SL is resilient to degradation of auditory and language input and that SL is not specific to speech. Absolute reaction time (RT) (reflecting a combination of complex processes including SL) was found to be a sensitive measure for differentiating between groups and between types of stimuli. Specifically, normal hearing groups showed longer RT for speech compared to environmental stimuli, a prolongation that was not evident for the CI group, suggesting similar perceptual strategies applying for both sound types; and RT of Low SES children was the longest for speech stimuli compared to other groups of children, evidence of the negative impact of language deprivation on speech processing. Age was the largest contributing factor to the results (~ 50%) followed by cognitive abilities (~ 10%). Implications for intervention include speech-processing targeted programs, provided early in the critical periods of development for low SES children.

References

  1. Dev Sci. 2018 May;21(3):e12575 [PMID: 28557278]
  2. Educ Res. 2012 Dec 1;41(9):339-351 [PMID: 24683265]
  3. Dev Sci. 2019 Jan;22(1):e12723 [PMID: 30207641]
  4. J Clin Exp Neuropsychol. 2017 Apr;39(3):265-285 [PMID: 27615432]
  5. Science. 2009 Feb 13;323(5916):951-3 [PMID: 19213922]
  6. Sci Rep. 2019 Mar 5;9(1):3532 [PMID: 30837546]
  7. Child Neuropsychol. 2015;21(3):285-301 [PMID: 24697256]
  8. PLoS One. 2021 Jan 22;16(1):e0244954 [PMID: 33481800]
  9. Child Dev. 2020 Jul;91(4):e762-e779 [PMID: 31591711]
  10. Front Psychol. 2015 Jan 08;5:1541 [PMID: 25620943]
  11. Res Dev Disabil. 2014 Sep;35(9):1952-62 [PMID: 24858793]
  12. J Speech Lang Hear Res. 2001 Oct;44(5):1083-96 [PMID: 11708529]
  13. Brain Behav Immun. 2018 Oct;73:320-330 [PMID: 29791872]
  14. Ear Hear. 2012 Sep-Oct;33(5):617-39 [PMID: 22555184]
  15. PLoS One. 2014 Jun 27;9(6):e99710 [PMID: 24972020]
  16. Dev Psychol. 2012 Jan;48(1):171-84 [PMID: 21967562]
  17. J Commun Disord. 2005 Jan-Feb;38(1):29-63 [PMID: 15475013]
  18. Mem Cognit. 2004 Sep;32(6):956-64 [PMID: 15673183]
  19. Otol Neurotol. 2016 Feb;37(2):e82-95 [PMID: 26756160]
  20. Nat Rev Neurosci. 2014 Jun;15(6):355-66 [PMID: 24840800]
  21. Psychol Sci. 2010 Oct;21(10):1532-40 [PMID: 20935168]
  22. Brain Cogn. 2002 Nov;50(2):304-15 [PMID: 12464197]
  23. Cereb Cortex. 2004 Sep;14(9):1008-21 [PMID: 15166097]
  24. Ear Hear. 2011 Jul-Aug;32(4):511-23 [PMID: 21248643]
  25. J Exp Child Psychol. 2015 Jan;129:165-72 [PMID: 25204514]
  26. Cereb Cortex. 2000 May;10(5):512-28 [PMID: 10847601]
  27. Neuropsychologia. 2000;38(1):1-10 [PMID: 10617287]
  28. Prev Med. 1998 Mar-Apr;27(2):195-9 [PMID: 9578994]
  29. J Acoust Soc Am. 1996 Aug;100(2 Pt 1):968-77 [PMID: 8759950]
  30. Neuropsychology. 2008 May;22(3):293-300 [PMID: 18444707]
  31. Front Psychol. 2013 Mar 25;4:137 [PMID: 23533100]
  32. J Clin Psychol. 1996 Nov;52(6):651-61 [PMID: 8912108]
  33. Infant Behav Dev. 2018 Feb;50:238-246 [PMID: 29448186]
  34. Dev Neuropsychol. 2010;35(5):494-505 [PMID: 20721771]
  35. Clin Linguist Phon. 2003 Dec;17(8):617-43 [PMID: 14977026]
  36. J Cogn Neurosci. 2011 Nov;23(11):3241-53 [PMID: 21281092]
  37. Cognition. 2018 Jan;170:123-129 [PMID: 28988151]
  38. J Acoust Soc Am. 2022 Sep;152(3):1842 [PMID: 36182316]
  39. J Speech Lang Hear Res. 2021 Mar 17;64(3):1023-1039 [PMID: 33630667]
  40. J Speech Lang Hear Res. 2021 Apr 14;64(4):1081-1103 [PMID: 33784194]
  41. Cereb Cortex. 2006 Jan;16(1):115-23 [PMID: 15829731]
  42. Dev Sci. 2021 Mar;24(2):e13020 [PMID: 32687657]
  43. Dev Sci. 2004 Feb;7(1):88-102 [PMID: 15323121]
  44. Cognition. 1999 Feb 1;70(1):27-52 [PMID: 10193055]
  45. J Cogn. 2021 Jan 07;4(1):1 [PMID: 33506167]
  46. J Clin Med. 2020 May 08;9(5): [PMID: 32397101]
  47. Lang Speech Hear Serv Sch. 2018 Aug 14;49(3S):723-739 [PMID: 30120449]
  48. Res Dev Disabil. 2022 Mar;122:104170 [PMID: 35030467]
  49. Pediatr Res. 2017 Nov;82(5):749-752 [PMID: 28388602]
  50. Ear Hear. 2013 Sep;34(5):535-52 [PMID: 23462376]
  51. Dev Sci. 2023 Jul;26(4):e13351 [PMID: 36417543]
  52. J Basic Clin Physiol Pharmacol. 2004;15(1-2):41-55 [PMID: 15485129]
  53. Int J Lang Commun Disord. 2016 Sep;51(5):518-30 [PMID: 26864995]
  54. Curr Dir Psychol Sci. 2009 Oct;18(5):275-279 [PMID: 20725604]
  55. BMC Med Educ. 2020 Dec 14;20(1):507 [PMID: 33317499]
  56. J Child Lang. 2019 Jul;46(4):785-799 [PMID: 30803455]
  57. J Exp Psychol Learn Mem Cogn. 2005 Jan;31(1):24-39 [PMID: 15641902]
  58. Ear Hear. 2010 Dec;31(6):761-8 [PMID: 20562623]
  59. J Cogn Neurosci. 2009 Jun;21(6):1106-15 [PMID: 18752394]
  60. Exp Brain Res. 2011 Mar;209(3):465-71 [PMID: 21318347]
  61. PLoS One. 2020 Oct 13;15(10):e0240423 [PMID: 33048970]
  62. Behav Res Methods. 2023 Apr;55(3):1480-1495 [PMID: 35668342]
  63. Dev Psychol. 2013 Apr;49(4):665-71 [PMID: 22612434]
  64. Int J Pediatr Otorhinolaryngol. 2016 Jun;85:158-65 [PMID: 27240516]
  65. J Int Neuropsychol Soc. 2011 Jan;17(1):120-32 [PMID: 21073770]
  66. Brain Lang. 2017 Aug;171:14-22 [PMID: 28437659]
  67. Am J Speech Lang Pathol. 2007 Nov;16(4):381-92 [PMID: 17971497]
  68. Dev Sci. 2011 Jan;14(1):69-82 [PMID: 21159089]
  69. Clin Interv Aging. 2020 Mar 17;15:395-406 [PMID: 32231429]
  70. J Exp Child Psychol. 1998 Jun;69(3):199-221 [PMID: 9654439]
  71. Curr Opin Behav Sci. 2020 Dec;36:98-105 [PMID: 33457470]
  72. PLoS One. 2014 Apr 21;9(4):e95255 [PMID: 24751691]
  73. Int J Audiol. 2018 Oct;57(10):746-754 [PMID: 29933710]
  74. PLoS Biol. 2021 Mar 5;19(3):e3001147 [PMID: 33667219]
  75. J Cogn Neurosci. 2006 Aug;18(8):1292-303 [PMID: 16859415]
  76. Ear Hear. 2019 Jan/Feb;40(1):213-217 [PMID: 29547477]
  77. Cortex. 2014 Feb;51:1-10 [PMID: 24315731]
  78. Dev Psychol. 2005 Nov;41(6):885-901 [PMID: 16351335]
  79. J Neurodev Disord. 2022 Mar 19;14(1):20 [PMID: 35305572]
  80. Annu Rev Neurosci. 2019 Jul 8;42:47-65 [PMID: 30699049]
  81. J Cogn Neurosci. 2001 Oct 1;13(7):994-1005 [PMID: 11595101]
  82. Brain Cogn. 1998 Feb;36(1):30-51 [PMID: 9500881]
  83. Elife. 2022 Jan 21;11: [PMID: 35060904]
  84. Neuropsychology. 2003 Jul;17(3):517-33 [PMID: 12959517]
  85. Int J Pediatr Otorhinolaryngol. 2016 Apr;83:16-21 [PMID: 26968046]
  86. Sci Rep. 2016 Nov 17;6:37405 [PMID: 27853313]
  87. Eur J Neurosci. 2007 Jul;26(1):261-4 [PMID: 17581256]
  88. Psychol Sci. 2008 Mar;19(3):241-8 [PMID: 18315796]
  89. N Engl J Med. 2010 Oct 7;363(15):1438-50 [PMID: 20925546]
  90. Brain Cogn. 1998 Nov;38(2):246-53 [PMID: 9853100]
  91. Dev Cogn Neurosci. 2020 Oct;45:100819 [PMID: 32828032]
  92. J Neurophysiol. 2002 Sep;88(3):1451-60 [PMID: 12205165]
  93. J Neurosci. 2018 Sep 5;38(36):7870-7877 [PMID: 30104336]
  94. PLoS One. 2017 Jun 22;12(6):e0179973 [PMID: 28640916]
  95. J Speech Lang Hear Res. 2017 Dec 20;60(12):3656-3666 [PMID: 29230476]
  96. Psychon Bull Rev. 2022 Apr;29(2):541-551 [PMID: 34671934]
  97. J Intell. 2024 Feb 10;12(2): [PMID: 38392175]
  98. PLoS One. 2018 Dec 21;13(12):e0209590 [PMID: 30576383]
  99. PLoS Comput Biol. 2014 Jan;10(1):e1003412 [PMID: 24391486]
  100. Appl Psycholinguist. 2020 Mar;41(2):319-346 [PMID: 35547838]
  101. Nat Rev Neurosci. 2007 May;8(5):393-402 [PMID: 17431404]
  102. Dev Rev. 2019 Jun;52:42-62 [PMID: 31417205]
  103. Autism Res. 2018 Jul;11(7):1050-1061 [PMID: 29676529]
  104. Ann Dyslexia. 2017 Jul;67(2):163-179 [PMID: 27761876]
  105. J Exp Psychol Learn Mem Cogn. 2007 Jan;33(1):34-54 [PMID: 17201553]
  106. Cognition. 2010 Sep;116(3):321-40 [PMID: 20573341]
  107. Infancy. 2021 Mar;26(2):204-222 [PMID: 33378584]
  108. J Cogn Neurosci. 2004 Oct;16(8):1339-51 [PMID: 15509382]
  109. Otolaryngol Head Neck Surg. 2023 Aug;169(2):210-220 [PMID: 36939587]
  110. Child Dev. 2003 Sep-Oct;74(5):1368-78 [PMID: 14552403]
  111. Cortex. 2005 Jun;41(3):399-433 [PMID: 15871604]
  112. Front Behav Neurosci. 2019 May 21;13:112 [PMID: 31178705]

MeSH Term

Humans
Cochlear Implants
Male
Female
Child
Reaction Time
Child, Preschool
Learning
Language Development
Social Class
Speech Perception
Young Adult
Acoustic Stimulation

Word Cloud

Created with Highcharts 10.0.0childrenlanguageSLSESspeechlowstimulihearingCIauditoryenvironmentalRTgroupscomparedsequencelearningdeficitsspecificdelayscochlearimplantsdegradedinputnatureLowdeprivationnurtureparticipantsnormalNHcognitiveshowedsuggestingtypeseffect'ImplicitcrucialacquisitionstudiedorganicegimpairmentHoweveralsoseennon-organiclosssocioeconomicstatusdevelopstrongskillsvariabilityperformancesuggestsmayaffecttypicallyexperienceduepurposestudyinvestigateversuseffectstotal100dividedyoungadultshigh-moderatetestedtwoSerialReactionTimeSRTtaskssoundstestsResultsnonspeechresilientdegradationAbsolutereactiontimereflectingcombinationcomplexprocessesincludingfoundsensitivemeasuredifferentiatingSpecificallylongerprolongationevidentgroupsimilarperceptualstrategiesapplyingsoundlongestevidencenegativeimpactprocessingAgelargestcontributingfactorresults~ 50%followedabilities~ 10%Implicationsinterventionincludespeech-processingtargetedprogramsprovidedearlycriticalperiodsdevelopmentAuditoryinput:'naturehighsocio-economicbackgrounds'nurture

Similar Articles

Cited By