Distinguishing mechanisms of social contagion from local network view.

Elsa Andres, Gergely Ódor, Iacopo Iacopini, Márton Karsai
Author Information
  1. Elsa Andres: Department of Network and Data Science, Central European University, Vienna, 1100 Austria.
  2. Gergely Ódor: Department of Network and Data Science, Central European University, Vienna, 1100 Austria.
  3. Iacopo Iacopini: Network Science Institute, Northeastern University London, London, E1W 1LP UK.
  4. Márton Karsai: Department of Network and Data Science, Central European University, Vienna, 1100 Austria.

Abstract

The adoption of individual behavioural patterns is largely determined by stimuli arriving from peers via social interactions or from external sources. Based on these influences, individuals are commonly assumed to follow simple or complex adoption rules, inducing social contagion processes. In reality, multiple adoption rules may coexist even within the same social contagion process, introducing additional complexity to the spreading phenomena. Our goal is to understand whether coexisting adoption mechanisms can be distinguished from a microscopic view at the egocentric network level without requiring global information about the underlying network, or the unfolding spreading process. We formulate this question as a classification problem, and study it through a likelihood approach and with random forest classifiers in various synthetic and data-driven experiments. This study offers a novel perspective on the observations of propagation processes at the egocentric level and a better understanding of landmark contagion mechanisms from a local view.

Keywords

References

  1. Sci Rep. 2014 Mar 11;4:4343 [PMID: 24614301]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066130 [PMID: 15244690]
  3. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5766-71 [PMID: 16578874]
  4. PLoS One. 2015 Nov 16;10(11):e0143020 [PMID: 26571486]
  5. Nat Commun. 2021 Jan 8;12(1):133 [PMID: 33420016]
  6. Sci Rep. 2022 Jun 7;12(1):9350 [PMID: 35672432]
  7. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15649-53 [PMID: 18824681]
  8. Health Educ Behav. 2020 Apr;47(2):235-248 [PMID: 32090655]
  9. Sci Rep. 2018 Feb 15;8(1):3094 [PMID: 29449569]
  10. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  11. Sci Rep. 2016 Jun 07;6:27178 [PMID: 27272744]
  12. Sci Rep. 2015 Aug 21;5:13122 [PMID: 26293740]
  13. Sci Rep. 2013;3:2522 [PMID: 23982106]
  14. Phys Rev Lett. 2015 Nov 20;115(21):218702 [PMID: 26636878]
  15. J R Soc Interface. 2021 Jun;18(179):20210019 [PMID: 34062106]
  16. PLoS One. 2012;7(1):e29528 [PMID: 22276119]
  17. Sci Rep. 2012;2:469 [PMID: 22741058]
  18. N Engl J Med. 2008 May 22;358(21):2249-58 [PMID: 18499567]
  19. Science. 2010 Sep 3;329(5996):1194-7 [PMID: 20813952]
  20. Phys Rev Lett. 2014 Jan 31;112(4):048701 [PMID: 24580496]
  21. Phys Rev Lett. 2023 Jun 16;130(24):247401 [PMID: 37390429]
  22. J R Soc Interface. 2019 Jun 28;16(155):20190196 [PMID: 31213174]
  23. Phys Rev Lett. 2014 Aug 22;113(8):088701 [PMID: 25192129]
  24. Phys Rev E. 2019 Oct;100(4-1):040301 [PMID: 31770919]
  25. Sci Rep. 2018 Jul 10;8(1):10422 [PMID: 29991815]
  26. J R Soc Interface. 2014 Dec 6;11(101):20140694 [PMID: 25339685]
  27. PLoS Comput Biol. 2024 Jun 10;20(6):e1012206 [PMID: 38857274]
  28. Nat Commun. 2019 Jun 6;10(1):2485 [PMID: 31171784]
  29. PLoS Comput Biol. 2010 Nov 04;6(11):e1000968 [PMID: 21079667]
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):046117 [PMID: 18517700]
  31. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  32. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6 [PMID: 22474360]
  33. Sci Adv. 2024 Apr 12;10(15):eadh4439 [PMID: 38608015]
  34. Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2312202121 [PMID: 38154065]
  35. Nat Commun. 2017 Apr 18;8:14753 [PMID: 28418379]
  36. PLoS One. 2017 Sep 22;12(9):e0184148 [PMID: 28937984]
  37. Nat Phys. 2020 Apr;16:426-431 [PMID: 34221104]
  38. Nat Commun. 2023 Mar 13;14(1):1375 [PMID: 36914645]
  39. J R Soc Interface. 2023 Mar;20(200):20220736 [PMID: 36946092]
  40. Entropy (Basel). 2023 Jun 13;25(6): [PMID: 37372273]
  41. PLoS One. 2011;6(8):e23883 [PMID: 21886834]

Word Cloud

Created with Highcharts 10.0.0adoptionsocialcontagionmechanismsviewnetworkrulesprocessesprocessspreadingegocentriclevelstudylocalindividualbehaviouralpatternslargelydeterminedstimuliarrivingpeersviainteractionsexternalsourcesBasedinfluencesindividualscommonlyassumedfollowsimplecomplexinducingrealitymultiplemaycoexistevenwithinintroducingadditionalcomplexityphenomenagoalunderstandwhethercoexistingcandistinguishedmicroscopicwithoutrequiringglobalinformationunderlyingunfoldingformulatequestionclassificationproblemlikelihoodapproachrandomforestclassifiersvarioussyntheticdata-drivenexperimentsoffersnovelperspectiveobservationspropagationbetterunderstandinglandmarkDistinguishingComplexnetworksComputationalscienceScientificdata

Similar Articles

Cited By