Characterization of a G. max��������G. soja nested association mapping population and identification of loci controlling seed composition traits from wild soybean.

Linfeng Chen, Earl Taliercio, Zenglu Li, Rouf Mian, Thomas E Carter, He Wei, Chuck Quigely, Susan Araya, Ruifeng He, Qijian Song
Author Information
  1. Linfeng Chen: College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China.
  2. Earl Taliercio: Soybean and Nitrogen Fixation Research Unit, USDA-ARS, Raleigh, NC, USA.
  3. Zenglu Li: Department of Crop and Soil Sciences, Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, USA.
  4. Rouf Mian: Soybean and Nitrogen Fixation Research Unit, USDA-ARS, Raleigh, NC, USA.
  5. Thomas E Carter: Soybean and Nitrogen Fixation Research Unit, USDA-ARS, Raleigh, NC, USA.
  6. He Wei: Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
  7. Chuck Quigely: Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
  8. Susan Araya: Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
  9. Ruifeng He: Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
  10. Qijian Song: Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA. Qijian.Song@usda.gov. ORCID

Abstract

Wild soybean (Glycine soja Siebold & Zucc.) has valuable genetic diversity for improved disease resistance, stress tolerance, seed protein content and seed sulfur-containing amino acid concentrations. Many studies have reported loci controlling seed composition traits based on cultivated soybean populations, but wild soybean has been largely overlooked. In this study, a nested association mapping (NAM) population consisting of 10 families and 1107 recombinant inbred lines was developed by crossing 10 wild accessions with the common cultivar NC-Raleigh. Seed composition of the F generation grown at two locations was phenotyped, and genetic markers were identified for each line. The average number of recombination events in the wild soybean-derived population was significantly higher than that in the cultivated soybean-derived population, which resulted in a higher resolution for QTL mapping. Segregation bias in almost all NAM families was significantly biased toward the alleles of the wild soybean parent. Through single-family linkage mapping and association analysis of the entire NAM population, new QTLs with positive allele effects were identified from wild parents, including 5, 6, 18, 9, 16, 17 and 20 for protein content, oil content, total protein and oil content, methionine content, cysteine content, lysine content and threonine content, respectively. Candidate genes associated with these traits were identified based on gene annotations and gene expression levels in different tissues. This is the first study to reveal the genetic characteristics of wild soybean-derived populations, landscapes and the extent of effects of QTLs and candidate genes controlling traits from different wild soybean parents.

References

  1. Plant Cell. 1994 Nov;6(11):1567-82 [PMID: 7827492]
  2. BMC Genomics. 2015 Apr 12;16:290 [PMID: 25887319]
  3. Plant Genome. 2018 Jul;11(2): [PMID: 30025026]
  4. Plant Cell. 2020 Jul;32(7):2083-2093 [PMID: 32398275]
  5. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  6. Genetics. 2008 Jan;178(1):539-51 [PMID: 18202393]
  7. Plant Physiol. 2007 Sep;145(1):119-34 [PMID: 17644626]
  8. J Mol Biol. 2021 Nov 5;433(22):167255 [PMID: 34547327]
  9. Theor Appl Genet. 2006 Feb;112(3):546-53 [PMID: 16341836]
  10. Plant J. 2020 Nov;104(3):800-811 [PMID: 32772442]
  11. Plant J. 2007 Jan;49(2):238-49 [PMID: 17144895]
  12. Theor Appl Genet. 2015 May;128(5):839-50 [PMID: 25673144]
  13. Plant Cell. 2015 Mar;27(3):607-19 [PMID: 25794936]
  14. BMC Genomics. 2014 Jan 02;15:1 [PMID: 24382143]
  15. Plant Genome. 2023 Mar;16(1):e20308 [PMID: 36744727]
  16. Mol Genet Genomics. 2011 Dec;286(5-6):307-19 [PMID: 21918817]
  17. Plant Genome. 2015 Nov;8(3):eplantgenome2015.04.0024 [PMID: 33228276]
  18. Biochem J. 2007 Jun 1;404(2):247-56 [PMID: 17313365]
  19. Mol Plant. 2023 May 1;16(5):794-797 [PMID: 36950735]
  20. Annu Rev Plant Biol. 2003;54:357-74 [PMID: 14502995]
  21. Theor Appl Genet. 2010 Jul;121(2):229-36 [PMID: 20204319]
  22. Theor Appl Genet. 2017 Nov;130(11):2327-2343 [PMID: 28828506]
  23. J Exp Bot. 2012 May;63(8):3173-84 [PMID: 22357599]
  24. Theor Appl Genet. 2024 Mar 21;137(4):86 [PMID: 38512498]
  25. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16666-71 [PMID: 17068128]
  26. Plant Biotechnol J. 2019 Jul;17(7):1380-1393 [PMID: 30575264]
  27. Theor Appl Genet. 2019 Jun;132(6):1639-1659 [PMID: 30806741]
  28. Plant Genome. 2017 Jul;10(2): [PMID: 28724064]
  29. Theor Appl Genet. 1992 Mar;83(5):608-12 [PMID: 24202678]
  30. G3 (Bethesda). 2017 Jun 7;7(6):1913-1926 [PMID: 28450374]
  31. Theor Appl Genet. 1992 Aug;84(5-6):544-54 [PMID: 24201339]
  32. Nat Genet. 2011 Feb;43(2):163-8 [PMID: 21217757]
  33. G3 (Bethesda). 2018 Oct 3;8(10):3367-3375 [PMID: 30131329]
  34. Plant Physiol. 2007 Dec;145(4):1670-80 [PMID: 17965177]
  35. Plant J. 2022 Apr;110(1):114-128 [PMID: 34978122]
  36. PLoS Genet. 2020 Nov 11;16(11):e1009114 [PMID: 33175845]
  37. Nat Commun. 2022 Jun 1;13(1):3051 [PMID: 35650185]
  38. PLoS One. 2017 May 11;12(5):e0177225 [PMID: 28493991]
  39. Int J Mol Sci. 2017 Jun 01;18(6): [PMID: 28587169]
  40. Science. 2009 Aug 7;325(5941):737-40 [PMID: 19661427]
  41. New Phytol. 2010 Oct;188(1):242-53 [PMID: 20618914]
  42. Front Plant Sci. 2018 Nov 26;9:1740 [PMID: 30534135]
  43. J Exp Bot. 2014 Oct;65(19):5527-34 [PMID: 24902885]
  44. Theor Appl Genet. 2013 Feb;126(2):425-33 [PMID: 23052024]
  45. Genetics. 2017 Jun;206(2):573-585 [PMID: 28592497]
  46. Theor Appl Genet. 2004 Feb;108(3):458-67 [PMID: 14504749]
  47. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 [PMID: 7433111]
  48. Theor Appl Genet. 2022 May;135(5):1797-1810 [PMID: 35275252]
  49. Cells. 2021 May 21;10(6): [PMID: 34064239]
  50. PLoS One. 2013;8(1):e54985 [PMID: 23372807]
  51. BMC Genomics. 2016 Jan 06;17:33 [PMID: 26739042]

Grants

  1. 8042-21000-304-00D/Agricultural Research Service
  2. 2333-203-0101/United Soybean Board

MeSH Term

Glycine max
Quantitative Trait Loci
Seeds
Chromosome Mapping
Phenotype
Genetic Markers
Alleles
Genetic Linkage
Genotype
Genetic Association Studies

Chemicals

Genetic Markers

Word Cloud

Created with Highcharts 10.0.0contentwildsoybeanpopulationseedtraitsmappinggeneticproteincontrollingcompositionassociationNAMidentifiedsoybean-derivedsojalocibasedcultivatedpopulationsstudynested10familiessignificantlyhigherQTLseffectsparentsoilgenesgenedifferentWildGlycineSiebold&Zuccvaluablediversityimproveddiseaseresistancestresstolerancesulfur-containingaminoacidconcentrationsManystudiesreportedlargelyoverlookedconsisting1107recombinantinbredlinesdevelopedcrossingaccessionscommoncultivarNC-RaleighSeedFgenerationgrowntwolocationsphenotypedmarkerslineaveragenumberrecombinationeventsresultedresolutionQTLSegregationbiasalmostbiasedtowardallelesparentsingle-familylinkageanalysisentirenewpositivealleleincluding56189161720totalmethioninecysteinelysinethreoninerespectivelyCandidateassociatedannotationsexpressionlevelstissuesfirstrevealcharacteristicslandscapesextentcandidateCharacterizationGmax��������Gidentification

Similar Articles

Cited By