An analysis of curative care expenditure for Parkinson's disease under different comorbidity conditions: an empirical study based on China.

Yuelin Zhou, Yanru Li, Jia Li, Qiaoying Wei, Lanming Fan, Xueli Zhang, Lian Yang
Author Information
  1. Yuelin Zhou: School of Management, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China.
  2. Yanru Li: School of Management, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China.
  3. Jia Li: School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China.
  4. Qiaoying Wei: School of Management, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China.
  5. Lanming Fan: School of Management, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China.
  6. Xueli Zhang: Health Information Center of Sichuan Province, Chengdu, Sichuan Province, China.
  7. Lian Yang: School of Public Health, Chengdu University of Traditional Chinese Medicine, HEOA Group, Chengdu, Sichuan Province, China. yyanglian@163.com.

Abstract

BACKGROUND: This study aims to evaluate the curative care expenditure (CCE) of Parkinson's disease (PD) under different comorbidity conditions to provide a reference basis for formulating health policies for PD.
METHODS: This study used a multi-stage stratified random sampling method to investigate 37,604 PD patients in 1,600 medical institutions in Sichuan, China, in 2019. Based on the System of Health Accounts 2011 (SHA2011), the scale of the CCE, financing schemes, institutional flows, and beneficiary groups of PD under different comorbidity conditions were calculated. Multiple linear regression model was used to analyze the factors influencing the hospitalization expenditure.
RESULTS: In 2019, the total CCE for PD in Sichuan was US$36.29 million, accounting for 0.11% of the province's total disease CCE and 0.005% of its gross domestic product (GDP) that year. Household out-of-pocket (OOP) payments (68.98% for outpatients and 42.26% for inpatients) and public financing schemes (30.69% for outpatients and 52.28% for inpatients) were the main sources of financing CCE. More than 80% of the CCE went to general hospitals, while less than 2% went to primary health-care institutions. As the comorbidity index increased, the CCE for PD exhibited an aging trend, with the low-, medium-, and high-comorbidity groups mainly concentrated in those in their fifties, those aged 60-79, and those over 80, respectively. The multiple linear regression analysis showed that the top three factors affecting hospitalization expenditure were the length of stay, surgery and institution level.
CONCLUSIONS: The CCE for PD is high, and individuals and families are the main bearers of health expenditures. It is recommended to optimize medical insurance policies, increase outpatient insurance coverage, and gradually increase the level of insurance benefits. Furthermore, it is necessary to explore multi-party collaboration to establish a diversified and multi-level medical security system for PD.

Keywords

References

  1. Am J Med. 2019 Jul;132(7):802-807 [PMID: 30890425]
  2. Lancet Neurol. 2006 Jun;5(6):525-35 [PMID: 16713924]
  3. Mov Disord. 2019 Jun;34(6):866-875 [PMID: 30957308]
  4. Intern Med. 2016;55(2):113-9 [PMID: 26781008]
  5. Lancet. 2017 Sep 16;390(10100):1211-1259 [PMID: 28919117]
  6. Lancet Neurol. 2018 Nov;17(11):939-953 [PMID: 30287051]
  7. J Neurol Sci. 2012 Mar 15;314(1-2):41-7 [PMID: 22133477]
  8. J Neurol. 2008 Sep;255 Suppl 5:18-32 [PMID: 18787879]
  9. Mov Disord. 2020 Aug;35(8):1357-1368 [PMID: 32472658]
  10. Acta Neurol Scand. 2021 Nov;144(5):592-599 [PMID: 34254292]
  11. Parkinsonism Relat Disord. 2022 Nov;104:123-128 [PMID: 36333237]
  12. Neurology. 2003 Jan 14;60(1):87-93 [PMID: 12525724]
  13. Brain. 2020 Jul 1;143(7):2220-2234 [PMID: 32613234]
  14. Mov Disord. 2013 Mar;28(3):311-8 [PMID: 23436720]
  15. Lancet Reg Health Am. 2022 Mar;7:None [PMID: 35300390]
  16. Mov Disord. 1998 Nov;13(6):885-94 [PMID: 9827611]
  17. Int J Environ Res Public Health. 2022 Mar 09;19(6): [PMID: 35328925]
  18. Mov Disord. 2014 Nov;29(13):1583-90 [PMID: 24976103]
  19. J Gynecol Oncol. 2019 Jan;30(1):e6 [PMID: 30479090]
  20. Brain. 2019 Jan 1;143(1):234-248 [PMID: 31755958]
  21. Parkinsons Dis. 2017;2017:5932675 [PMID: 28352490]
  22. Mov Disord. 2021 Dec;36(12):2940-2944 [PMID: 34390510]
  23. J Neurol. 2019 Aug;266(8):1944-1952 [PMID: 31076875]
  24. Eur Neuropsychopharmacol. 2011 Feb;21(2):180-91 [PMID: 20888737]
  25. Lancet. 2021 Jun 12;397(10291):2284-2303 [PMID: 33848468]
  26. PLoS One. 2020 Dec 17;15(12):e0243612 [PMID: 33332388]
  27. NPJ Parkinsons Dis. 2020 Jul 9;6:15 [PMID: 32665974]
  28. J Affect Disord. 2011 Jul;132(1-2):82-8 [PMID: 21356559]
  29. Health Policy. 2017 Jul;121(7):764-769 [PMID: 28546030]
  30. Neuroepidemiology. 2024;58(4):237-246 [PMID: 38290491]
  31. J Cancer. 2019 Oct 20;10(26):6491-6501 [PMID: 31777579]
  32. Neurology. 2007 Jan 30;68(5):384-6 [PMID: 17082464]
  33. BMJ Open. 2021 Jun 28;11(6):e043155 [PMID: 34183335]
  34. Orphanet J Rare Dis. 2022 Oct 8;17(1):373 [PMID: 36209113]
  35. Ann Surg Oncol. 2017 Nov;24(12):3692-3699 [PMID: 28871563]
  36. JAMA Neurol. 2023 Feb 1;80(2):161-171 [PMID: 36342675]
  37. BMC Health Serv Res. 2021 Aug 30;21(1):895 [PMID: 34461884]
  38. J Neurol Neurosurg Psychiatry. 2004 Apr;75(4):637-9 [PMID: 15026515]
  39. Age Ageing. 2021 Jun 28;50(4):1182-1188 [PMID: 33219665]
  40. J Clin Med. 2021 Apr 17;10(8): [PMID: 33920665]
  41. J Parkinsons Dis. 2018;8(s1):S3-S8 [PMID: 30584159]
  42. Arch Gerontol Geriatr. 2020 Sep - Oct;90:104135 [PMID: 32554217]
  43. Mov Disord. 2006 Sep;21(9):1439-43 [PMID: 16773620]
  44. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]
  45. PLoS One. 2014 Jul 21;9(7):e102149 [PMID: 25048354]
  46. J Clin Epidemiol. 1994 Nov;47(11):1245-51 [PMID: 7722560]
  47. Sci Rep. 2022 Jan 11;12(1):526 [PMID: 35017548]

Grants

  1. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  2. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  3. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  4. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  5. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  6. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province
  7. No. 301021002/the Estimation and Study of Total Health Expenditure in Sichuan Province

MeSH Term

Humans
China
Health Expenditures
Parkinson Disease
Male
Female
Aged
Comorbidity
Middle Aged
Hospitalization
Aged, 80 and over

Word Cloud

Created with Highcharts 10.0.0CCEPDexpenditurecomorbiditydiseasestudycaredifferentmedicalfinancinginsurancecurativeParkinson'sconditionshealthpoliciesusedinstitutionsSichuanChina2019SHA2011schemesgroupslinearregressionfactorshospitalizationtotal0outpatientsinpatientsmainwentindexanalysislevelincreaseBACKGROUND:aimsevaluateprovidereferencebasisformulatingMETHODS:multi-stagestratifiedrandomsamplingmethodinvestigate37604patients1600BasedSystemHealthAccounts2011scaleinstitutionalflowsbeneficiarycalculatedMultiplemodelanalyzeinfluencingRESULTS:US$3629 millionaccounting11%province's005%grossdomesticproductGDPyearHouseholdout-of-pocketOOPpayments6898%4226%public3069%5228%sources80%generalhospitalsless2%primaryhealth-careincreasedexhibitedagingtrendlow-medium-high-comorbiditymainlyconcentratedfiftiesaged60-7980respectivelymultipleshowedtopthreeaffectinglengthstaysurgeryinstitutionCONCLUSIONS:highindividualsfamiliesbearersexpendituresrecommendedoptimizeoutpatientcoveragegraduallybenefitsFurthermorenecessaryexploremulti-partycollaborationestablishdiversifiedmulti-levelsecuritysystemconditions:empiricalbasedAge-adjustedCharlsonCurativeParkinson’s

Similar Articles

Cited By