The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates.

Ira Tanneur, Etienne Dervyn, Cyprien Guérin, Guillaume Kon Kam King, Matthieu Jules, Pierre Nicolas
Author Information
  1. Ira Tanneur: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
  2. Etienne Dervyn: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France. ORCID
  3. Cyprien Guérin: Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France. ORCID
  4. Guillaume Kon Kam King: Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France. ORCID
  5. Matthieu Jules: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France. ORCID
  6. Pierre Nicolas: Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France. ORCID

Abstract

Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.

References

  1. Nucleic Acids Res. 2023 Apr 11;51(6):2974-2992 [PMID: 36919610]
  2. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20695-700 [PMID: 19106298]
  3. Cell. 2006 Jul 28;126(2):297-308 [PMID: 16873062]
  4. Methods Enzymol. 2006;409:195-213 [PMID: 16793403]
  5. PLoS Biol. 2022 Nov 18;20(11):e3001878 [PMID: 36399436]
  6. Cell Syst. 2017 Mar 22;4(3):291-305.e7 [PMID: 28189581]
  7. Nat Rev Genet. 2007 Aug;8(8):610-8 [PMID: 17637733]
  8. Nat New Biol. 1973 Jun 20;243(129):241-3 [PMID: 4197760]
  9. Nat Rev Methods Primers. 2022;2: [PMID: 37073402]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Open Biol. 2017 Sep;7(9): [PMID: 28878042]
  12. Mol Biol Evol. 2018 Oct 1;35(10):2414-2421 [PMID: 29939310]
  13. Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947 [PMID: 30371878]
  14. Genetics. 2018 Aug;209(4):1043-1054 [PMID: 29907648]
  15. Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028 [PMID: 34887558]
  16. G3 (Bethesda). 2016 Aug 09;6(8):2583-91 [PMID: 27317782]
  17. Mol Biol Evol. 2015 Jul;32(7):1672-83 [PMID: 25750180]
  18. Bioinformatics. 2019 Sep 1;35(17):2966-2973 [PMID: 30649250]
  19. Curr Biol. 2016 Mar 7;26(5):692-7 [PMID: 26923786]
  20. Nat Commun. 2018 May 1;9(1):1746 [PMID: 29717118]
  21. Genome Res. 2017 Aug;27(8):1336-1343 [PMID: 28512192]
  22. Crit Rev Biochem Mol Biol. 2018 Feb;53(1):29-48 [PMID: 29108429]
  23. J Bacteriol. 2013 Sep;195(18):4085-93 [PMID: 23836866]
  24. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83 [PMID: 22991466]
  25. PLoS Genet. 2011 Oct;7(10):e1002282 [PMID: 22022273]
  26. Genetics. 2018 Aug;209(4):1029-1042 [PMID: 29907647]
  27. EMBO J. 1989 Nov;8(11):3511-6 [PMID: 2555167]
  28. J Bacteriol. 2012 Oct;194(19):5361-7 [PMID: 22843852]
  29. Annu Rev Genet. 2002;36:279-303 [PMID: 12429694]
  30. Mol Cell. 2010 Jul 9;39(1):145-51 [PMID: 20603082]
  31. Sci Rep. 2022 Sep 14;12(1):15470 [PMID: 36104390]
  32. Gene. 1992 Feb 1;111(1):43-9 [PMID: 1312503]
  33. Clin Microbiol Infect. 2010 Jul;16(7):798-808 [PMID: 20880409]
  34. Nature. 1997 Jun 12;387(6634):700-2 [PMID: 9192893]
  35. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2176-81 [PMID: 26839411]
  36. FEMS Microbiol Lett. 1997 Aug 15;153(2):247-54 [PMID: 9271849]
  37. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  38. J Theor Biol. 2016 Jul 21;401:54-63 [PMID: 27113784]
  39. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E5990-9 [PMID: 26460006]
  40. J Bacteriol. 2012 Jan;194(2):243-52 [PMID: 22056936]
  41. Nature. 1997 Jun 12;387(6634):703-5 [PMID: 9192894]
  42. Evolution. 2022 Mar;76(3):528-540 [PMID: 34989408]
  43. Nucleic Acids Res. 2018 Sep 28;46(17):9236-9250 [PMID: 30137492]
  44. J Biol Chem. 2003 Nov 7;278(45):44361-8 [PMID: 12949067]
  45. Front Microbiol. 2022 Jun 30;13:866089 [PMID: 35847079]
  46. Nucleic Acids Res. 2016 Sep 6;44(15):7495-508 [PMID: 27402159]
  47. Biol Lett. 2017 Mar;13(3): [PMID: 28250208]
  48. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9026-E9035 [PMID: 29073099]
  49. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8126-30 [PMID: 3054881]
  50. Mol Biol Evol. 2017 Nov 1;34(11):2927-2943 [PMID: 28961727]
  51. Infect Genet Evol. 2020 Nov;85:104435 [PMID: 32569744]
  52. G3 (Bethesda). 2020 Aug 5;10(8):2671-2681 [PMID: 32503807]
  53. G3 (Bethesda). 2017 Dec 4;7(12):3849-3856 [PMID: 29084818]
  54. Nucleic Acids Res. 2014 Feb;42(3):1393-413 [PMID: 24106089]
  55. Evolution. 2014 Jan;68(1):150-62 [PMID: 24372601]
  56. Science. 2001 Nov 23;294(5547):1716-9 [PMID: 11721055]
  57. Nat Commun. 2015 Oct 07;6:8425 [PMID: 26443021]
  58. Science. 2012 Mar 2;335(6072):1103-6 [PMID: 22383849]
  59. Mol Gen Genet. 1991 May;226(3):467-72 [PMID: 1840638]
  60. Microbiol Mol Biol Rev. 2012 Sep;76(3):530-64 [PMID: 22933559]
  61. Mol Microbiol. 2011 Nov;82(3):648-63 [PMID: 21958350]
  62. Mol Cell. 2016 Jun 2;62(5):745-55 [PMID: 27259205]
  63. J Mol Biol. 1999 Jun 18;289(4):835-50 [PMID: 10369765]
  64. Nat Rev Genet. 2016 Oct 14;17(11):704-714 [PMID: 27739533]
  65. Gene. 1999 Sep 30;238(1):65-77 [PMID: 10570985]
  66. PLoS Genet. 2012;8(10):e1003016 [PMID: 23071460]

Grants

  1. ANR-18-CE43-0002/French National Research Agency
  2. /MathNum division of
  3. /INRAE

MeSH Term

Bacillus subtilis
DNA Mismatch Repair
DNA Replication
DNA-Directed DNA Polymerase
Mutation Rate
Mutation
Bacterial Proteins
MutL Proteins
DNA Polymerase III

Chemicals

DNA-Directed DNA Polymerase
Bacterial Proteins
PolC protein, bacteria
MutL Proteins
DNA Polymerase III

Word Cloud

Created with Highcharts 10.0.0DNAproofreadingsubtilispolymerasemutationsmutationMMRconditionalhypermutatorserrorsraterepairevolutionBacillusnucleotideselectivityalleleBdifficultiesshowserrorratesPolymerasereplicationmajorsourcepointgenomesspontaneousalsodependscounteractingactivitymechanismsmutatorphenotypesappearingconstantlyallowingperiodsrapidnaturelaboratoryuseGram-positivemodelbacteriumdisentanglecontributionsinitialmismatchachieveconstructedseveralproofreading-deficientpolCand/ordeficientmutLperformedaccumulationexperimentsenrichsyntheticbiologytoolboxdirectedUsingmathematicalmodelsinvestigatedinterpretapparentprobabilitiesescapehighlightingworkingcountsaggregatepotentiallyheterogeneousunknownspathwaysleadingwild-typeAwareanalysispreventspartialsaturationinherentdrawbackskewnetamplifyingintrinsicbiasesmutationallandscapeskews

Similar Articles

Cited By