Ecological and evolutionary responses of earthworm holobionts to environmental changes.

Michael Opoku Adomako, Jing Wu, Fei-Hai Yu
Author Information
  1. Michael Opoku Adomako: School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China. ORCID
  2. Jing Wu: Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China.
  3. Fei-Hai Yu: School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China. ORCID

Abstract

Global environmental change substantially affects soil detritivores, including earthworms, impacting host-microbiota interactions and altering key soil biogeochemical processes such as litter decomposition. As microbial communities are inherently capable of rapid evolution, responses of earthworms and associated microbiota (i.e. earthworm holobionts) to global environmental change may likely involve the interplay of ecological and evolutionary processes and feedback. Although species-level responses of earthworms to global environmental change are well studied, the potential ecological and evolutionary responses of earthworm holobionts to environmental change remain unexplored. Here, we provide a conceptual framework to elaborate on the complex network of earthworm host-microbiota interactions that modify their traits in response to global environmental change, jointly shaping their ecology and evolution. Based on the literature, we synthesize evidence of global environmental change impacts on earthworm host-microbiota and discuss evidence of their ecological and evolutionary responses to environmental change. Lastly, we highlight the agro- and eco-system-level consequences of environmental change-mediated shift in earthworm host-microbiota functions. Soil legacies of environmental change have cascading detrimental impacts on the abundance, diversity, and functional dynamics of earthworm host-microbiota interactions in agriculture and ecosystems. The primary mechanisms driving such responses of earthworm hosts and associated microbial communities to environmental change include altered litter quality and host dietary preferences, competitive interactions and exclusion, habitat homogenization, and a shift in soil physicochemical and biological processes. Therefore, advancing knowledge of the intricate animal-microorganism interactions is crucial for belowground biodiversity management in a changing global environment.

Keywords

References

  1. Microb Ecol. 2022 May;83(4):960-970 [PMID: 34279696]
  2. J Hazard Mater. 2023 Oct 15;460:132305 [PMID: 37672993]
  3. Nature. 2015 Apr 2;520(7545):45-50 [PMID: 25832402]
  4. J Environ Sci (China). 2020 Aug;94:137-146 [PMID: 32563477]
  5. Microb Ecol. 2020 Nov;80(4):837-845 [PMID: 32561944]
  6. Environ Chem. 2019 Jun 13;16(1):3-7 [PMID: 31231167]
  7. ISME J. 2020 Sep;14(9):2236-2247 [PMID: 32444813]
  8. Environ Sci Technol. 2021 Jan 5;55(1):423-432 [PMID: 33332973]
  9. Sci Total Environ. 2020 Jul 20;727:138301 [PMID: 32330704]
  10. Heliyon. 2023 Mar 15;9(3):e14572 [PMID: 36994405]
  11. Ann Bot. 2021 Jan 1;127(1):123-133 [PMID: 32805737]
  12. Sci Total Environ. 2022 Dec 1;850:158041 [PMID: 35973535]
  13. Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2308811121 [PMID: 38805274]
  14. Front Plant Sci. 2023 Jan 11;13:1126610 [PMID: 36714751]
  15. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11240-5 [PMID: 22733785]
  16. Environ Sci Technol. 2018 Mar 6;52(5):3081-3090 [PMID: 29378395]
  17. J Hazard Mater. 2023 Mar 15;446:130707 [PMID: 36603428]
  18. Nat Commun. 2021 Aug 26;12(1):5141 [PMID: 34446709]
  19. Conserv Biol. 2009 Aug;23(4):966-74 [PMID: 19236448]
  20. Science. 2012 Nov 23;338(6110):1085-8 [PMID: 23112294]
  21. Environ Sci Technol. 2020 May 19;54(10):6000-6008 [PMID: 32352284]
  22. Science. 2011 Aug 19;333(6045):1024-6 [PMID: 21852500]
  23. Environ Toxicol Chem. 2021 Aug;40(8):2240-2246 [PMID: 34033687]
  24. ISME J. 2017 Dec;11(12):2691-2704 [PMID: 28753209]
  25. Nat Commun. 2024 Jan 6;15(1):327 [PMID: 38184663]
  26. Science. 2019 Oct 25;366(6464):480-485 [PMID: 31649197]
  27. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  28. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62 [PMID: 22891306]
  29. Conserv Biol. 2024 Apr;38(2):e14187 [PMID: 37768192]
  30. PLoS One. 2020 Oct 22;15(10):e0240996 [PMID: 33091062]
  31. Sci Total Environ. 2023 Dec 10;903:166666 [PMID: 37657540]
  32. Environ Pollut. 2019 Aug;251:110-116 [PMID: 31071627]
  33. Nat Commun. 2019 Jul 23;10(1):3109 [PMID: 31337752]
  34. Nature. 2003 Feb 6;421(6923):625-7 [PMID: 12571594]
  35. Front Ecol Environ. 2019 Nov;17(9):502-510 [PMID: 31908623]
  36. Chemosphere. 2021 Dec;284:131290 [PMID: 34198065]
  37. ISME J. 2024 Jan 8;18(1): [PMID: 38691428]
  38. Sci Total Environ. 2020 Oct 20;740:140145 [PMID: 32927577]
  39. BMC Ecol Evol. 2021 Sep 8;21(1):172 [PMID: 34496752]
  40. Environ Pollut. 2019 Aug;251:910-920 [PMID: 31234257]
  41. Nat Rev Microbiol. 2011 Apr;9(4):233-43 [PMID: 21358670]
  42. Sci Total Environ. 2021 Jan 20;753:142042 [PMID: 32892003]
  43. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12302-8 [PMID: 22826253]
  44. ISME J. 2010 Mar;4(3):357-66 [PMID: 19924156]
  45. Toxicol Sci. 2020 Aug 1;176(2):253-284 [PMID: 32392306]
  46. Commun Biol. 2023 Dec 1;6(1):1220 [PMID: 38040868]
  47. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15712-6 [PMID: 20733067]
  48. ISME J. 2012 Jun;6(6):1166-75 [PMID: 22170422]
  49. Front Microbiol. 2022 Mar 29;13:853535 [PMID: 35422770]
  50. Environ Microbiol. 2015 Jun;17(6):1884-96 [PMID: 25404571]
  51. Nat Commun. 2015 Aug 04;6:7869 [PMID: 26241769]
  52. ISME J. 2014 Jun;8(6):1336-45 [PMID: 24351937]
  53. ISME J. 2020 Jan;14(1):318-321 [PMID: 31624349]
  54. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190590 [PMID: 32772675]
  55. New Phytol. 2022 Jun;234(6):1919-1928 [PMID: 35114015]
  56. ISME J. 2016 Aug;10(8):1915-24 [PMID: 26978164]
  57. Environ Pollut. 2009 Nov;157(11):3114-9 [PMID: 19501438]
  58. iScience. 2024 Jan 29;27(3):109036 [PMID: 38361612]
  59. Adv Genet (Hoboken). 2020 Aug 10;1(1):e10022 [PMID: 36619247]
  60. ISME J. 2009 Sep;3(9):1004-11 [PMID: 19440233]
  61. J Environ Sci (China). 2021 Nov;109:171-180 [PMID: 34607666]
  62. Trends Plant Sci. 2024 May;29(5):560-571 [PMID: 38042677]
  63. Ecology. 2016 Mar;97(3):605-14 [PMID: 27197388]
  64. Environ Pollut. 2018 Mar;234:495-502 [PMID: 29216487]
  65. Science. 2007 Nov 16;318(5853):1134-6 [PMID: 18006745]
  66. J Exp Bot. 2022 Jun 2;73(11):3339-3354 [PMID: 35192700]
  67. Chemosphere. 2017 Feb;168:1194-1202 [PMID: 27810239]
  68. Genet Mol Biol. 2018;41(1 suppl 1):189-197 [PMID: 29505062]
  69. Ecol Lett. 2023 Sep;26 Suppl 1:S81-S90 [PMID: 36965002]
  70. Chemosphere. 2017 Mar;171:485-490 [PMID: 28038420]
  71. Environ Int. 2022 Jan;158:106924 [PMID: 34634621]
  72. Cell. 2014 Mar 27;157(1):121-41 [PMID: 24679531]
  73. Sci Adv. 2022 Nov 11;8(45):eabm9982 [PMID: 36351024]
  74. Chemosphere. 2022 Nov;307(Pt 3):135940 [PMID: 35963381]
  75. Trends Ecol Evol. 2024 Feb;39(2):165-174 [PMID: 37863775]
  76. ISME J. 2020 Jul;14(7):1675-1687 [PMID: 32238913]
  77. Front Microbiol. 2020 Mar 10;11:384 [PMID: 32210948]
  78. Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2221619120 [PMID: 37579148]
  79. Trends Ecol Evol. 2004 Jan;19(1):18-24 [PMID: 16701221]
  80. ISME J. 2024 Jan 8;18(1): [PMID: 38502869]
  81. Front Microbiol. 2015 May 27;6:529 [PMID: 26074907]
  82. Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2418632121 [PMID: 39446386]
  83. Annu Rev Microbiol. 2007;61:169-89 [PMID: 17506687]
  84. ISME J. 2023 Nov;17(11):1953-1965 [PMID: 37673969]
  85. Environ Pollut. 2022 Jan 1;292(Pt A):118242 [PMID: 34600067]
  86. ISME J. 2023 Jul;17(7):1004-1014 [PMID: 37069233]
  87. Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2216922120 [PMID: 36848561]
  88. J Hazard Mater. 2021 Jan 15;402:124034 [PMID: 33254833]
  89. ISME J. 2023 Dec;17(12):2210-2220 [PMID: 37833523]
  90. Front Microbiol. 2016 Jun 21;7:991 [PMID: 27446031]
  91. Cell Mol Immunol. 2021 Apr;18(4):866-877 [PMID: 33707689]
  92. Ecol Lett. 2008 Apr;11(4):380-8 [PMID: 18248449]
  93. Sci Adv. 2022 Nov 18;8(46):eabq8015 [PMID: 36383677]
  94. Nat Microbiol. 2022 Oct;7(10):1650-1660 [PMID: 36065063]
  95. Microorganisms. 2021 Jul 09;9(7): [PMID: 34361905]
  96. ISME J. 2021 Feb;15(2):618-621 [PMID: 33005005]
  97. Ecotoxicol Environ Saf. 2020 Jan 15;187:109788 [PMID: 31648073]
  98. Microorganisms. 2022 Dec 03;10(12): [PMID: 36557652]
  99. iScience. 2024 Jan 12;27(2):108889 [PMID: 38322986]
  100. Science. 2019 Nov 15;366(6467):886-890 [PMID: 31727838]
  101. Sci Rep. 2014 Nov 03;4:6890 [PMID: 25363633]
  102. Nat Rev Microbiol. 2023 Sep;21(9):590-603 [PMID: 37069454]
  103. Glob Chang Biol. 2017 Mar;23(3):1065-1074 [PMID: 27590777]
  104. Ecology. 2020 Dec;101(12):e03187 [PMID: 32893873]
  105. Proc Natl Acad Sci U S A. 2021 May 4;118(18): [PMID: 33906949]
  106. J Anim Ecol. 2018 Jan;87(1):162-172 [PMID: 28833091]
  107. Front Plant Sci. 2021 Mar 16;12:627573 [PMID: 33796124]
  108. ISME J. 2013 May;7(5):991-1002 [PMID: 23283017]
  109. Data Brief. 2020 Feb 08;29:105263 [PMID: 32149168]
  110. ISME J. 2015 Jun;9(6):1269-79 [PMID: 25500508]
  111. Trends Plant Sci. 2024 Sep;29(9):1029-1040 [PMID: 38641475]
  112. Ecol Lett. 2021 Feb;24(2):348-362 [PMID: 33085152]
  113. Biol Lett. 2022 Mar;18(3):20210636 [PMID: 35350876]
  114. Trends Plant Sci. 2020 Aug;25(8):733-743 [PMID: 32345569]
  115. Environ Pollut. 2020 Dec;267:115633 [PMID: 33254656]
  116. ISME J. 2022 Jan;16(1):58-67 [PMID: 34218251]
  117. Front Plant Sci. 2025 Jan 06;15:1464973 [PMID: 39834706]
  118. Nat Commun. 2023 Sep 26;14(1):5713 [PMID: 37752110]
  119. Front Microbiol. 2014 Mar 28;5:128 [PMID: 24734029]
  120. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  121. ISME J. 2019 Jan;13(1):1-11 [PMID: 30042502]
  122. Science. 2024 Nov 15;386(6723):731-732 [PMID: 39541453]
  123. Front Plant Sci. 2021 Dec 23;12:735495 [PMID: 35003149]
  124. Ann Bot. 2021 Feb 9;127(3):327-336 [PMID: 33159517]
  125. Conserv Biol. 2007 Aug;21(4):997-1008 [PMID: 17650250]
  126. Environ Sci Technol. 2019 Apr 2;53(7):3841-3849 [PMID: 30875464]
  127. mBio. 2021 Oct 26;12(5):e0215521 [PMID: 34700384]
  128. Nat Commun. 2021 Jun 24;12(1):3918 [PMID: 34168127]
  129. Ecol Lett. 2019 Jan;22(1):200-210 [PMID: 30460738]
  130. Environ Pollut. 2021 Aug 15;283:117095 [PMID: 33862342]
  131. J Environ Manage. 2023 Nov 1;345:118762 [PMID: 37591095]
  132. ISME Commun. 2024 Dec 26;5(1):ycae171 [PMID: 39882509]
  133. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  134. Environ Int. 2022 Dec;170:107590 [PMID: 36272253]
  135. Sci Rep. 2019 Dec 6;9(1):18535 [PMID: 31811224]
  136. ISME J. 2025 Jan 2;19(1): [PMID: 39836381]
  137. Environ Pollut. 2020 Oct;265(Pt B):114921 [PMID: 32540597]
  138. Sci Adv. 2020 Aug 12;6(33):eabc1176 [PMID: 32851188]
  139. ISME J. 2019 Mar;13(3):738-751 [PMID: 30368524]
  140. Sci Total Environ. 2024 Dec 1;954:176491 [PMID: 39341239]
  141. Chemosphere. 2023 Oct;337:139329 [PMID: 37364643]
  142. Ecotoxicol Environ Saf. 2019 Apr 30;171:843-853 [PMID: 30660978]
  143. ISME J. 2021 Jul;15(7):2081-2091 [PMID: 33564112]
  144. Environ Sci Technol. 2021 Jun 1;55(11):7445-7455 [PMID: 33977709]
  145. Science. 2019 Oct 25;366(6464):425-426 [PMID: 31649184]
  146. Nature. 2016 Dec 8;540(7632):266-269 [PMID: 27919075]
  147. Sci Total Environ. 2018 May 15;624:753-757 [PMID: 29272844]
  148. Sci Total Environ. 2022 May 20;822:153563 [PMID: 35104518]
  149. ISME J. 2021 Aug;15(8):2264-2275 [PMID: 33619353]
  150. Sci Total Environ. 2024 Nov 20;952:175940 [PMID: 39218083]
  151. Nat Microbiol. 2022 Jul;7(7):1054-1062 [PMID: 35697795]
  152. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11951-E11960 [PMID: 30510004]
  153. Sci Total Environ. 2023 Aug 1;884:163760 [PMID: 37120023]
  154. J Hazard Mater. 2024 Jan 5;461:132577 [PMID: 37793249]
  155. J Hazard Mater. 2022 Mar 5;425:128006 [PMID: 34896725]
  156. New Phytol. 2018 Jun;218(4):1321-1324 [PMID: 29738088]

Grants

  1. W2433081/National Science Foundation of China

MeSH Term

Oligochaeta
Animals
Microbiota
Biological Evolution
Soil Microbiology
Climate Change
Soil
Ecosystem
Host Microbial Interactions

Chemicals

Soil

Word Cloud

Created with Highcharts 10.0.0environmentalchangeearthworminteractionsresponsesglobalhost-microbiotaprocessesholobiontsecologicalevolutionarysoilearthwormsmicrobialcommunitieslitterevolutionassociatedevidenceimpactsshiftGlobalsubstantiallyaffectsdetritivoresincludingimpactingalteringkeybiogeochemicaldecompositioninherentlycapablerapidmicrobiotaiemaylikelyinvolveinterplayfeedbackAlthoughspecies-levelwellstudiedpotentialremainunexploredprovideconceptualframeworkelaboratecomplexnetworkmodifytraitsresponsejointlyshapingecologyBasedliteraturesynthesizediscussLastlyhighlightagro-eco-system-levelconsequenceschange-mediatedfunctionsSoillegaciescascadingdetrimentalabundancediversityfunctionaldynamicsagricultureecosystemsprimarymechanismsdrivinghostsincludealteredqualityhostdietarypreferencescompetitiveexclusionhabitathomogenizationphysicochemicalbiologicalThereforeadvancingknowledgeintricateanimal-microorganismcrucialbelowgroundbiodiversitymanagementchangingenvironmentEcologicalchangesanimal–microbiotagroupseco-evolutionaryfactorsgut

Similar Articles

Cited By