Regulation of Steady State Ribosomal Transcription in : Intersection of Sigma Subunits, Superhelicity, and Transcription Factors.

Ana Ruiz Manzano, Drake Jensen, Eric A Galburt
Author Information
  1. Ana Ruiz Manzano: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108. ORCID
  2. Drake Jensen: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108. ORCID
  3. Eric A Galburt: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108. ORCID

Abstract

The regulation of ribosomal RNA (rRNA) is closely tied to nutrient availability, growth phase, and global gene expression, serving as a key factor in bacterial adaptability and pathogenicity. ) stands out from other species with a single ribosomal operon controlled by two promoters: P3 and P1 and a high ratio of sigma (��) factors to genome size. While the primary �� factor �� is known to drive ribosomal transcription, the alternative �� factor �� has been proposed to contribute to the transcription of housekeeping genes, including rRNA under a range of conditions. However, ��'s precise role remains unclear. Here, we quantify steady-state rates in reconstituted transcription reactions and establish that ��-mediated transcription from P3 dominates rRNA production by almost two orders of magnitude with minimal contributions from �� holoenzymes and/or P1 under all conditions tested. We measure and compare the kinetics of individual initiation steps for both holoenzymes which, taken together with the steady-state rate measurements, lead us to a model where �� holoenzymes exhibit slower DNA unwinding and slower holoenzyme recycling. Our data further demonstrate that the transcription factors CarD and RbpA reverse or buffer the stimulatory effect of negative superhelicity on �� and �� holoenzymes respectively. Lastly, we show that a major determinant of ��'s increased activity is due to its N-terminal 205 amino acids. Taken together, our data reveal the intricate interplay of promoter sequence, �� factor identity, DNA superhelicity, and transcription factors in shaping transcription initiation kinetics and, by extension, the steady-state rates of rRNA production in .

References

  1. Biochem Biophys Res Commun. 2022 Nov 5;628:123-132 [PMID: 36084550]
  2. Cell. 2009 Jul 10;138(1):146-59 [PMID: 19596241]
  3. Mol Cell. 2020 Apr 16;78(2):275-288.e6 [PMID: 32160514]
  4. Biotechnol Bioeng. 2006 Jun 20;94(3):585-95 [PMID: 16511888]
  5. Genome Biol. 2003;4(1):203 [PMID: 12540296]
  6. J Bacteriol. 1999 Jul;181(14):4326-33 [PMID: 10400591]
  7. J Mol Biol. 1987 Mar 20;194(2):205-18 [PMID: 3039150]
  8. Nucleic Acids Res. 2004 Jul 06;32(12):3537-45 [PMID: 15247343]
  9. J Bacteriol. 1999 Jan;181(2):469-76 [PMID: 9882660]
  10. Nucleic Acids Res. 2018 Nov 2;46(19):10106-10118 [PMID: 30102406]
  11. Cell Rep. 2013 Nov 27;5(4):1121-31 [PMID: 24268774]
  12. Nucleic Acids Res. 2020 Nov 4;48(19):10802-10819 [PMID: 32997144]
  13. Biochemistry. 2003 Sep 16;42(36):10718-25 [PMID: 12962496]
  14. Nucleic Acids Res. 2015 Jan;43(Database issue):D593-8 [PMID: 25414355]
  15. J Bacteriol. 2021 Mar 23;203(8): [PMID: 33139481]
  16. J Bacteriol. 2008 Jan;190(2):699-707 [PMID: 17993538]
  17. Cell. 1992 Aug 7;70(3):501-12 [PMID: 1643661]
  18. Mol Microbiol. 2014 Aug;93(4):682-97 [PMID: 24962732]
  19. Cell Syst. 2021 Sep 22;12(9):924-944.e2 [PMID: 34214468]
  20. Nat Commun. 2016 Mar 30;7:11055 [PMID: 27025941]
  21. J Biol Chem. 2023 Jun;299(6):104724 [PMID: 37075846]
  22. Mol Microbiol. 2002 Feb;43(3):717-31 [PMID: 11929527]
  23. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12619-24 [PMID: 23858468]
  24. mBio. 2019 May 21;10(3): [PMID: 31113892]
  25. J Bacteriol. 2012 Oct;194(20):5621-31 [PMID: 22904282]
  26. Mol Microbiol. 1999 Jan;31(2):715-24 [PMID: 10027986]
  27. Mol Microbiol. 1992 Feb;6(4):425-33 [PMID: 1313943]
  28. Tuberculosis (Edinb). 2008 Nov;88(6):566-75 [PMID: 18768372]
  29. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11604-E11613 [PMID: 30463953]
  30. J Bacteriol. 1997 Nov;179(22):6949-58 [PMID: 9371439]
  31. Chem Biol. 2008 Oct 20;15(10):1091-103 [PMID: 18940669]
  32. Nucleic Acids Res. 2015 Mar 31;43(6):3272-85 [PMID: 25697505]
  33. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13573-13581 [PMID: 31217290]
  34. Nucleic Acids Res. 2016 Sep 6;44(15):7304-13 [PMID: 27342278]
  35. J Bacteriol. 2019 Jan 28;201(4): [PMID: 30478083]
  36. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19772-7 [PMID: 24218560]
  37. FEMS Microbiol Rev. 2012 May;36(3):514-32 [PMID: 22320122]
  38. Mol Microbiol. 2024 Jul;122(1):81-112 [PMID: 38847475]
  39. Nucleic Acids Res. 2014;42(16):10399-408 [PMID: 25122744]
  40. J Bacteriol. 2016 Apr 14;198(9):1360-73 [PMID: 26883824]
  41. Nucleic Acids Res. 2012 Aug;40(14):6547-57 [PMID: 22570422]
  42. Nucleic Acids Res. 2019 Jul 26;47(13):6685-6698 [PMID: 31127308]
  43. FEMS Microbiol Rev. 2006 Nov;30(6):926-41 [PMID: 17064287]
  44. Nat Commun. 2023 Jan 30;14(1):484 [PMID: 36717560]
  45. Front Microbiol. 2023 Oct 30;14:1192831 [PMID: 37965550]
  46. J Mol Biol. 2015 Jul 31;427(15):2435-2450 [PMID: 26055538]
  47. Front Bioeng Biotechnol. 2014 Sep 03;2:33 [PMID: 25232540]
  48. Elife. 2019 Dec 16;8: [PMID: 31841111]
  49. Eur J Biochem. 1991 Nov 1;201(3):653-9 [PMID: 1718749]
  50. J Bacteriol. 2004 Nov;186(21):7186-95 [PMID: 15489429]
  51. Mol Microbiol. 2003 Apr;48(2):561-71 [PMID: 12675812]
  52. Appl Environ Microbiol. 2008 Aug;74(16):5146-52 [PMID: 18567683]
  53. J Bacteriol. 2024 Dec 19;206(12):e0006624 [PMID: 39499088]
  54. J Bacteriol. 2004 Feb;186(4):895-902 [PMID: 14761983]
  55. Mol Cell. 2017 Apr 20;66(2):169-179.e8 [PMID: 28392175]
  56. J Bacteriol. 1995 Dec;177(23):6832-5 [PMID: 7592475]
  57. Mol Microbiol. 1998 Jul;29(2):617-28 [PMID: 9720877]
  58. Nature. 2019 Jan;565(7739):382-385 [PMID: 30626968]
  59. Front Microbiol. 2020 Sep 17;11:560099 [PMID: 33042067]
  60. Metab Eng. 2012 Sep;14(5):477-86 [PMID: 22871504]
  61. Genome Biol. 2014;15(11):502 [PMID: 25380655]
  62. Protein Sci. 2021 Oct;30(10):2042-2056 [PMID: 34398513]
  63. Front Microbiol. 2020 Jul 29;11:1798 [PMID: 32849409]
  64. Nat Commun. 2021 Jan 22;12(1):528 [PMID: 33483500]
  65. Mol Microbiol. 2003 Mar;47(6):1485-94 [PMID: 12622807]
  66. Transcription. 2020 Apr;11(2):53-65 [PMID: 31880185]
  67. Mol Microbiol. 1993 Apr;8(2):277-85 [PMID: 8316080]
  68. Mol Microbiol. 2016 Oct;102(1):107-20 [PMID: 27353316]
  69. Nat Commun. 2024 Oct 9;15(1):8740 [PMID: 39384756]
  70. Nucleic Acids Res. 2023 Oct 27;51(19):e99 [PMID: 37739412]
  71. Microbiology (Reading). 1996 Mar;142 ( Pt 3):667-674 [PMID: 8868442]
  72. J Biol Chem. 2023 Mar;299(3):102933 [PMID: 36690275]
  73. J Mol Biol. 2019 Apr 5;431(8):1576-1591 [PMID: 30872139]
  74. Springerplus. 2014 Nov 06;3:656 [PMID: 25485196]
  75. BMC Mol Cell Biol. 2019 Jul 18;20(1):26 [PMID: 31319794]
  76. Biomolecules. 2022 Jun 15;12(6): [PMID: 35740956]
  77. J Bacteriol. 2014 Feb;196(4):790-9 [PMID: 24317401]
  78. Appl Environ Microbiol. 2011 Jul;77(13):4634-46 [PMID: 21602383]
  79. Mol Microbiol. 2001 Nov;42(4):1007-20 [PMID: 11737643]
  80. J Biol Chem. 2013 May 17;288(20):14438-14450 [PMID: 23548911]
  81. iScience. 2024 May 28;27(6):110140 [PMID: 38957792]
  82. J Bacteriol. 2021 Aug 9;203(17):e0021021 [PMID: 34152199]
  83. Nat Struct Mol Biol. 2024 Nov;31(11):1778-1788 [PMID: 38951624]
  84. Nat Commun. 2017 Jul 13;8:16072 [PMID: 28703128]
  85. J Biol Chem. 1996 Jan 26;271(4):1998-2004 [PMID: 8567650]
  86. J Bacteriol. 2018 Jun 11;200(13): [PMID: 29686140]
  87. Annu Rev Microbiol. 2014;68:357-76 [PMID: 25002089]
  88. Biology (Basel). 2020 Dec 03;9(12): [PMID: 33287185]
  89. Elife. 2022 Jan 26;11: [PMID: 35080493]
  90. J Mol Biol. 2001 Jun 8;309(3):561-72 [PMID: 11397080]
  91. FEMS Microbiol Lett. 2001 Aug 7;202(1):59-65 [PMID: 11506908]
  92. Biochim Biophys Acta. 1973 Feb 12;301(1):53-70 [PMID: 4574767]
  93. J Bacteriol. 2006 Feb;188(4):1279-85 [PMID: 16452409]
  94. Biophys Rev. 2016 Sep;8(3):209-220 [PMID: 28510224]
  95. Science. 2013 Jun 28;340(6140):1580-3 [PMID: 23812716]
  96. J Bacteriol. 1998 Nov;180(21):5756-61 [PMID: 9791129]
  97. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29658-29668 [PMID: 33168725]
  98. J Bacteriol. 2009 Sep;191(18):5628-33 [PMID: 19592585]
  99. EcoSal Plus. 2008 Sep;3(1): [PMID: 26443740]
  100. Elife. 2017 Jan 09;6: [PMID: 28067618]
  101. Microorganisms. 2021 Jan 01;9(1): [PMID: 33401387]
  102. Front Microbiol. 2018 Jun 08;9:1232 [PMID: 29937760]
  103. Mol Syst Biol. 2008;4:225 [PMID: 18985025]
  104. Biochem J. 2014 Oct 1;463(1):135-44 [PMID: 24995916]
  105. Comput Struct Biotechnol J. 2019 Jul 26;17:1047-1055 [PMID: 31452857]
  106. RNA. 2017 Dec;23(12):1788-1795 [PMID: 28939697]
  107. Biochem Biophys Res Commun. 1986 May 14;136(3):1136-41 [PMID: 3013168]
  108. Nat Rev Microbiol. 2005 Feb;3(2):157-69 [PMID: 15685225]

Grants

  1. R35 GM144282/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0��transcriptionrRNAfactorholoenzymesribosomalfactorssteady-statetwoP3P1conditions��'sratesproductionkineticsinitiationtogetherslowerDNAdatasuperhelicityTranscriptionregulationRNAcloselytiednutrientavailabilitygrowthphaseglobalgeneexpressionservingkeybacterialadaptabilitypathogenicitystandsspeciessingleoperoncontrolledpromoters:highratiosigmagenomesizeprimaryknowndrivealternativeproposedcontributehousekeepinggenesincludingrangeHoweverpreciseroleremainsunclearquantifyreconstitutedreactionsestablish��-mediateddominatesalmostordersmagnitudeminimalcontributionsand/ortestedmeasurecompareindividualstepstakenratemeasurementsleadusmodelexhibitunwindingholoenzymerecyclingdemonstrateCarDRbpAreversebufferstimulatoryeffectnegativerespectivelyLastlyshowmajordeterminantincreasedactivitydueN-terminal205aminoacidsTakenrevealintricateinterplaypromotersequenceidentityshapingextensionRegulationSteadyStateRibosomal:IntersectionSigmaSubunitsSuperhelicityFactors

Similar Articles

Cited By

No available data.