In-silico repurposing of antiviral compounds against Marburg virus: a computational drug discovery approach.

Rahul Kumar Singh, Kaushik Sarkar, Rajesh Kumar Das
Author Information
  1. Rahul Kumar Singh: Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013 India.
  2. Kaushik Sarkar: Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013 India.
  3. Rajesh Kumar Das: Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013 India.

Abstract

The Marburg virus (MARV), a member of the family Filoviridae, is a highly pathogenic virus causing severe hemorrhagic fever with extremely high mortality in humans and non-human primates. The MARV exhibits clinical and epidemiological features almost identical to those of the Ebola virus, no licensed vaccines or antiviral treatments have been developed yet for MARV. However, only a few treatments that remain uncertain of the disease are available to help bring a case for a new therapeutic approach. Considering the non-availability of any standard drug we have planned to identify potential inhibitors of VP24 (PDB ID: 4OR8) through a computational drug repurposing process. The workflow includes: identifying a druggable pocket on VP24, screening of FDA-approved antivirals via molecular docking, assessing the stability using molecular dynamics simulations, and estimating binding affinity through MM-PBSA calculations. After going through the analysis, the compound Bictegravir manifests as a hit compound which will undergo in vitro and in vivo validation to confirm its efficacy against MARV.
Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-025-00323-7.

Keywords

References

  1. Comput Methods Programs Biomed. 2020 Oct;195:105660 [PMID: 32726718]
  2. J Chem Phys. 2014 Jul 7;141(1):014111 [PMID: 25005281]
  3. Expert Opin Drug Metab Toxicol. 2024 Nov 13;:1-8 [PMID: 39530796]
  4. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  5. J Virol. 2014 May;88(10):5859-63 [PMID: 24574400]
  6. Biochem Biophys Res Commun. 2016 Aug 5;476(4):273-279 [PMID: 27233604]
  7. J Chem Inf Model. 2014 Jul 28;54(7):1951-62 [PMID: 24850022]
  8. Ann Med Surg (Lond). 2023 Feb 7;85(2):328-330 [PMID: 36845761]
  9. Nature. 1974 Mar 22;248(446):338-9 [PMID: 4819639]
  10. Virulence. 2022 Dec;13(1):609-633 [PMID: 35363588]
  11. Biologicals. 2024 Nov;88:101798 [PMID: 39471737]
  12. PLoS One. 2007 Aug 22;2(8):e764 [PMID: 17712412]
  13. Sci Rep. 2024 May 23;14(1):11783 [PMID: 38782944]
  14. J Phys Chem B. 2016 Apr 21;120(15):3692-8 [PMID: 27031562]
  15. Biosci Trends. 2022 Sep 17;16(4):312-316 [PMID: 35908851]
  16. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  17. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]
  18. Annu Rev Pathol. 2013 Jan 24;8:411-40 [PMID: 23121052]
  19. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  20. J Infect Dis. 2015 Oct 1;212 Suppl 2:S154-9 [PMID: 25926686]
  21. Front Microbiol. 2024 Apr 25;15:1387628 [PMID: 38725678]
  22. Vaccines (Basel). 2022 Sep 01;10(9): [PMID: 36146524]
  23. PLoS One. 2024 Jun 13;19(6):e0302440 [PMID: 38870165]
  24. Cell Rep. 2014 Mar 27;6(6):1017-1025 [PMID: 24630991]
  25. Front Cell Infect Microbiol. 2023 May 24;13:1188763 [PMID: 37293201]
  26. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  27. Front Immunol. 2022 May 26;13:863234 [PMID: 35720422]
  28. PLoS One. 2015 Mar 27;10(3):e0119264 [PMID: 25816325]
  29. Virus Genes. 2017 Aug;53(4):501-515 [PMID: 28447193]
  30. Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
  31. J Chem Inf Model. 2012 Dec 21;52(12):3144-54 [PMID: 23146088]
  32. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  33. Molecules. 2017 Sep 25;22(10): [PMID: 28946656]
  34. Sci Rep. 2020 Dec 14;10(1):21878 [PMID: 33318576]
  35. Nature. 1987 Aug 27-Sep 2;328(6133):834-6 [PMID: 3627230]
  36. J Phys Chem B. 2014 Jan 16;118(2):547-56 [PMID: 24341749]
  37. Int J Surg. 2022 Oct;106:106923 [PMID: 36122837]
  38. Front Immunol. 2019 Jan 22;9:3071 [PMID: 30723475]
  39. Virology (Auckl). 2019 Jun 21;10:1178122X19849927 [PMID: 31258326]
  40. Viruses. 2012 Oct 01;4(10):1878-927 [PMID: 23202446]
  41. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  42. Methods Mol Biol. 2014;1084:193-226 [PMID: 24061923]
  43. J Cheminform. 2012 Aug 13;4(1):17 [PMID: 22889332]
  44. Nucleic Acids Res. 2022 Jul 5;50(W1):W159-W164 [PMID: 35609983]
  45. PLoS One. 2024 Apr 5;19(4):e0301519 [PMID: 38578751]
  46. J Biomol Struct Dyn. 2023;41(24):14689-14701 [PMID: 36970852]
  47. Lancet HIV. 2018 Jul;5(7):e357-e365 [PMID: 29925489]
  48. Bull Natl Res Cent. 2023;47(1):10 [PMID: 36721499]
  49. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  50. PLoS Pathog. 2010 Jan 15;6(1):e1000721 [PMID: 20084112]
  51. Int J Infect Dis. 2020 Oct;99:233-242 [PMID: 32758690]
  52. J Biomol Struct Dyn. 2021 Sep;39(15):5638-5656 [PMID: 32672528]

Word Cloud

Created with Highcharts 10.0.0virusMARVMarburgdrugrepurposingantiviraltreatmentsavailableapproachVP24computationalmolecularcompoundmemberfamilyFiloviridaehighlypathogeniccausingseverehemorrhagicfeverextremelyhighmortalityhumansnon-humanprimatesexhibitsclinicalepidemiologicalfeaturesalmostidenticalEbolalicensedvaccinesdevelopedyetHoweverremainuncertaindiseasehelpbringcasenewtherapeuticConsideringnon-availabilitystandardplannedidentifypotentialinhibitorsPDBID:4OR8processworkflowincludes:identifyingdruggablepocketscreeningFDA-approvedantiviralsviadockingassessingstabilityusingdynamicssimulationsestimatingbindingaffinityMM-PBSAcalculationsgoinganalysisBictegravirmanifestshitwillundergovitrovivovalidationconfirmefficacySupplementaryInformation:onlineversioncontainssupplementarymaterial101007/s40203-025-00323-7In-silicocompoundsvirus:discoveryDrugEpidemiologyImmunizationPrevention

Similar Articles

Cited By