Advancements and strategies of genetic improvement in cassava ( Crantz): from conventional to genomic approaches.

Liang Xiao, Dong Cheng, Wenjun Ou, Xin Chen, Ismail Yusuf Rabbi, Wenquan Wang, Kaimian Li, Huabing Yan
Author Information
  1. Liang Xiao: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  2. Dong Cheng: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  3. Wenjun Ou: Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  4. Xin Chen: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  5. Ismail Yusuf Rabbi: International Institute of Tropical Agriculture, Ibadan 200001, Nigeria.
  6. Wenquan Wang: National Key Laboratory of Biotechnology and Breeding of Tropical Crops, Hainan University, Haikou 570228, China.
  7. Kaimian Li: Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  8. Huabing Yan: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Abstract

Cassava ( Crantz) is a staple food of 800 million people in the tropical and subtropical regions of the world. Its industrial utilization for bioethanol, animal feed, and starch are still continuously expanding. It was not until the 1970s that significant scientific efforts were undertaken to improve cassava, despite its considerable economic and social significance. Shortening the breeding cycle and improving the breeding efficiency are always the focus of the cassava breeding study. In this review, we provide a global perspective on the current status of cassava germplasm resources and explore the diverse applications of cassava breeding methods from hybridization, polyploidy, and inbreeding to genomic selection and gene editing. Additionally, we overview at least six nearly complete cassava genome sequences established based on modern genomic techniques. These achievements have substantially supported the advancing of gene discovery and breeding of new cassava varieties. Furthermore, we provide a summary of the advancements in cassava's functional genomics, concentrating on important traits such as starch quality and content, dry matter content, tolerance to postharvest physiological deterioration, nutritional quality, and stress resistance. We also provide a comprehensive summary of the milestone events and key advancements in cassava genetic improvement over the past 50 years. Finally, we put forward the perspective of developing genomic selection breeding model and super-hybrids of cassava through building inbreeding population and emphasize the generation of triploid cassavas, as well as using gene editing technology allowing cassava to be a tropical model plant to serve for basic biological research and molecular breeding.

References

  1. Plant Cell. 2012 Feb;24(2):395-414 [PMID: 22374394]
  2. Mol Plant Pathol. 2024 Jan;25(1):e13402 [PMID: 37933591]
  3. Front Plant Sci. 2023 Feb 13;13:1101821 [PMID: 36860206]
  4. Genome Biol. 2023 Dec 14;24(1):289 [PMID: 38098107]
  5. J Exp Bot. 2022 Apr 18;73(8):2650-2665 [PMID: 35083483]
  6. Plant J. 2011 Jul;67(1):145-56 [PMID: 21435052]
  7. Cell. 2021 Jul 22;184(15):3873-3883.e12 [PMID: 34171306]
  8. Ann Bot. 2017 Aug 1;120(2):183-194 [PMID: 28854567]
  9. Theor Appl Genet. 2017 Oct;130(10):2069-2090 [PMID: 28707249]
  10. Funct Plant Biol. 2013 Mar;40(2):195-200 [PMID: 32481099]
  11. Sci Adv. 2018 Sep 05;4(9):eaat6086 [PMID: 30191180]
  12. Plant Biotechnol J. 2019 Feb;17(2):421-434 [PMID: 30019807]
  13. Theor Appl Genet. 2002 Sep;105(4):521-525 [PMID: 12582500]
  14. Plant Growth Regul. 2020;90(3):441-453 [PMID: 32214568]
  15. Mol Plant Pathol. 2018 Oct;19(10):2209-2220 [PMID: 29660238]
  16. Front Plant Sci. 2019 May 10;10:567 [PMID: 31134114]
  17. G3 (Bethesda). 2014 Dec 11;5(1):133-44 [PMID: 25504737]
  18. Nat Methods. 2022 Jun;19(6):635-638 [PMID: 35689027]
  19. Plant J. 2011 Oct;68(2):273-86 [PMID: 21707799]
  20. Front Plant Sci. 2021 May 25;12:668042 [PMID: 34140963]
  21. Nat Protoc. 2009;4(12):1845-54 [PMID: 20010938]
  22. J Gen Virol. 2010 May;91(Pt 5):1365-72 [PMID: 20071490]
  23. BMC Plant Biol. 2023 Jun 23;23(1):335 [PMID: 37353746]
  24. Plant Physiol. 2004 Jun;135(2):630-6 [PMID: 15155876]
  25. Gigascience. 2022 Mar 24;11: [PMID: 35333302]
  26. Plants (Basel). 2022 Jun 20;11(12): [PMID: 35736768]
  27. Curr Opin Plant Biol. 2008 Apr;11(2):166-70 [PMID: 18314378]
  28. Plant Sci. 2015 Nov;240:170-81 [PMID: 26475197]
  29. Plant Cell Physiol. 2009 Sep;50(9):1651-62 [PMID: 19608713]
  30. Curr Opin Genet Dev. 2015 Dec;35:119-25 [PMID: 26656231]
  31. Theor Appl Genet. 2022 Jan;135(1):145-171 [PMID: 34661695]
  32. Mol Plant Pathol. 2011 Sep;12(7):677-87 [PMID: 21726367]
  33. Plant Dis. 2016 Jul;100(7):1388-1396 [PMID: 30686208]
  34. J Agric Food Chem. 2007 Sep 5;55(18):7469-76 [PMID: 17696358]
  35. PLoS One. 2011;6(7):e21996 [PMID: 21799761]
  36. Plant J. 2021 Feb;105(3):754-770 [PMID: 33164279]
  37. Science. 2022 Apr;376(6588):44-53 [PMID: 35357919]
  38. Front Plant Sci. 2019 Apr 30;10:541 [PMID: 31114601]
  39. J Integr Plant Biol. 2010 Jul;52(7):653-69 [PMID: 20590995]
  40. Plant Biotechnol J. 2012 Dec;10(9):1056-66 [PMID: 22928630]
  41. Transgenic Res. 2017 Oct;26(5):639-651 [PMID: 28779475]
  42. Nat Biotechnol. 2016 May;34(5):562-70 [PMID: 27088722]
  43. Plant Cell Environ. 2022 Feb;45(2):412-426 [PMID: 34855989]
  44. Plant Foods Hum Nutr. 2010 Mar;65(1):64-70 [PMID: 20165984]
  45. Plant Signal Behav. 2013 Jun;8(6):e24525 [PMID: 23603959]
  46. J Exp Bot. 2017 Oct 13;68(17):4997-5006 [PMID: 28992113]
  47. Plant Physiol. 2024 Jul 31;195(4):2566-2578 [PMID: 38701041]
  48. J Exp Bot. 2015 Mar;66(5):1477-88 [PMID: 25547914]
  49. Front Plant Sci. 2022 Aug 18;13:994866 [PMID: 36061805]
  50. PLoS One. 2022 Dec 1;17(12):e0278717 [PMID: 36454974]
  51. Sci Rep. 2018 Jan 24;8(1):1549 [PMID: 29367617]
  52. Nucleic Acids Res. 2023 Jan 11;51(1):198-217 [PMID: 36583364]
  53. Nat Commun. 2022 Jul 7;13(1):3933 [PMID: 35798722]
  54. Plant Mol Biol. 2022 Jun;109(3):195-213 [PMID: 32734418]
  55. J Exp Bot. 2019 Oct 24;70(20):5559-5573 [PMID: 31232453]
  56. Food Chem. 2014 Oct 15;161:67-78 [PMID: 24837923]
  57. Crit Rev Food Sci Nutr. 1995 Jul;35(4):299-339 [PMID: 7576161]
  58. Plant Cell Environ. 2023 Feb;46(2):635-649 [PMID: 36451539]
  59. Plant Biotechnol J. 2021 Apr;19(4):844-854 [PMID: 33190345]
  60. Breed Sci. 2020 Apr;70(2):145-166 [PMID: 32523397]
  61. Front Plant Sci. 2022 Feb 01;13:790140 [PMID: 35178059]
  62. Lancet. 2008 Jan 19;371(9608):243-60 [PMID: 18207566]
  63. J Exp Bot. 2017 Jun 15;68(13):3657-3672 [PMID: 28637218]
  64. Front Plant Sci. 2023 Mar 17;13:1079254 [PMID: 37007603]
  65. Genes (Basel). 2022 Sep 14;13(9): [PMID: 36140817]
  66. Mol Plant Pathol. 2012 Aug;13(6):614-29 [PMID: 22672649]
  67. Trop Plant Biol. 2012 Mar;5(1):88-94 [PMID: 22523606]
  68. Theor Appl Genet. 2022 Mar;135(3):817-832 [PMID: 34837123]
  69. Nat Biotechnol. 1996 Jun;14(6):736-40 [PMID: 9630981]
  70. BMJ. 2011 Aug 25;343:d5094 [PMID: 21868478]
  71. Methods Protoc. 2018 Nov 13;1(4): [PMID: 31164582]
  72. Food Chem. 2024 Nov 15;458:140252 [PMID: 38964113]
  73. Plant Cell Tissue Organ Cult. 2018;132:219-224 [PMID: 32981997]
  74. J Virol. 2016 Mar 28;90(8):4160-4173 [PMID: 26865712]
  75. Plant Cell Physiol. 2003 Jun;44(6):630-6 [PMID: 12826628]
  76. Plant Cell Rep. 2022 Jul;41(7):1573-1587 [PMID: 35608655]
  77. Front Plant Sci. 2022 Sep 16;13:973206 [PMID: 36186068]
  78. J Exp Bot. 2022 Apr 5;73(7):1853-1867 [PMID: 34905020]
  79. Plant J. 2021 Aug;107(3):847-860 [PMID: 34022096]
  80. Plant Physiol. 2013 Mar;161(3):1517-28 [PMID: 23344905]
  81. Nat Plants. 2016 Aug 01;2:16115 [PMID: 27479829]
  82. Plant Biotechnol J. 2018 Jun;16(6):1186-1200 [PMID: 29193665]
  83. Mol Plant Pathol. 2016 Sep;17(7):1095-110 [PMID: 26662210]
  84. Plant Cell Physiol. 2010 Jun;51(6):1007-18 [PMID: 20400534]
  85. Planta. 2003 Jul;217(3):367-73 [PMID: 14520563]
  86. Cell Rep. 2021 Feb 2;34(5):108717 [PMID: 33535044]
  87. Crit Rev Biotechnol. 2023 Jun;43(4):594-612 [PMID: 35369831]
  88. Nat Genet. 2016 Oct;48(10):1225-32 [PMID: 27595476]
  89. Plant Biotechnol J. 2018 Jul;16(7):1275-1282 [PMID: 29223136]
  90. Plant Mol Biol. 2017 May;94(1-2):109-124 [PMID: 28258553]
  91. Plant Physiol. 2012 Aug;159(4):1396-407 [PMID: 22711743]
  92. J Agric Food Chem. 2009 Feb 25;57(4):1344-8 [PMID: 19199597]
  93. Front Plant Sci. 2015 Jun 10;6:411 [PMID: 26113851]
  94. Plant Genome. 2016 Jul;9(2): [PMID: 27898832]
  95. Transgenic Res. 2012 Feb;21(1):39-50 [PMID: 21465166]
  96. Mol Plant Pathol. 2024 Oct;25(10):e70010 [PMID: 39344009]
  97. Theor Appl Genet. 2015 Sep;128(9):1647-67 [PMID: 26093610]
  98. Plant J. 2021 Aug;107(3):925-937 [PMID: 34037995]
  99. Plant Genome. 2017 Nov;10(3): [PMID: 29293815]
  100. BMC Genomics. 2011 May 25;12:266 [PMID: 21609492]
  101. Science. 2020 Apr 17;368(6488):266-269 [PMID: 32299946]
  102. Plant Biotechnol J. 2022 Dec;20(12):2389-2405 [PMID: 36053917]
  103. Virus Res. 2014 Jun 24;186:87-96 [PMID: 24389096]
  104. Mol Plant. 2021 Jun 7;14(6):851-854 [PMID: 33866024]
  105. Transgenic Res. 2003 Apr;12(2):243-50 [PMID: 12739891]
  106. J Integr Plant Biol. 2020 Jun;62(6):832-846 [PMID: 31180179]
  107. Genome Biol. 2021 Nov 16;22(1):316 [PMID: 34784936]
  108. BMC Biol. 2019 Sep 18;17(1):75 [PMID: 31533702]
  109. Cell Biosci. 2021 Jun 30;11(1):119 [PMID: 34193297]
  110. Cell. 2023 May 25;186(11):2313-2328.e15 [PMID: 37146612]
  111. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5586-91 [PMID: 10318928]
  112. Hereditas. 2011 Nov;148(4-5):125-8 [PMID: 22150824]
  113. Sci Data. 2023 Dec 9;10(1):887 [PMID: 38071206]
  114. Plant Physiol Biochem. 2019 May;138:9-16 [PMID: 30825725]
  115. Nat Commun. 2014 Oct 10;5:5110 [PMID: 25300236]
  116. J Pineal Res. 2016 May;60(4):424-34 [PMID: 26989849]
  117. Sci China Life Sci. 2024 Aug;67(8):1727-1738 [PMID: 38679669]
  118. Plant Cell. 2010 Oct;22(10):3348-56 [PMID: 20889914]
  119. Plant Mol Biol. 2007 Jul;64(5):549-57 [PMID: 17492253]
  120. J Adv Res. 2022 Dec;42:41-53 [PMID: 35933090]
  121. Plant Cell. 2001 Feb;13(2):385-98 [PMID: 11226192]
  122. Nat Biotechnol. 2019 Feb;37(2):144-151 [PMID: 30692693]
  123. Plant Mol Biol. 2022 Jun;109(3):283-299 [PMID: 32270429]
  124. Annu Rev Plant Biol. 2021 Jun 17;72:761-791 [PMID: 33756096]
  125. Hereditas. 2007 Sep;144(4):129-36 [PMID: 17850597]
  126. Nat Biotechnol. 2015 Oct;33(10):1029-32 [PMID: 26448082]
  127. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13687-92 [PMID: 16157873]
  128. Plant Biotechnol J. 2021 Jan;19(1):26-34 [PMID: 32996672]
  129. Curr Opin Biotechnol. 2012 Apr;23(2):257-64 [PMID: 22226461]
  130. New Phytol. 2020 Apr;226(2):476-491 [PMID: 31782811]
  131. J Integr Plant Biol. 2011 Jul;53(7):552-69 [PMID: 21564542]
  132. Hortic Res. 2023 May 31;10(7):uhad111 [PMID: 37786730]
  133. J Agric Food Chem. 2022 Oct 12;70(40):12830-12840 [PMID: 36183268]
  134. BMC Plant Biol. 2014 Aug 05;14:208 [PMID: 25091029]
  135. Tree Physiol. 2020 Oct 29;40(11):1520-1533 [PMID: 32705122]
  136. Nat Genet. 2019 May;51(5):865-876 [PMID: 31043757]
  137. Plant J. 2011 Oct;68(2):287-301 [PMID: 21736650]
  138. Plant Physiol. 2005 Sep;139(1):363-74 [PMID: 16126856]
  139. J Agric Food Chem. 2008 Aug 27;56(16):7215-22 [PMID: 18656938]
  140. Nat Genet. 2017 Jun;49(6):959-963 [PMID: 28416819]
  141. Curr Genomics. 2008 Jun;9(4):212-26 [PMID: 19452039]
  142. Plant Physiol. 2011 Jan;155(1):282-92 [PMID: 21045121]
  143. Plant Biotechnol J. 2020 Jul;18(7):1504-1506 [PMID: 31858710]
  144. BMC Genomics. 2019 Jun 21;20(1):514 [PMID: 31226927]
  145. Biotechnol Adv. 2014 Jan-Feb;32(1):87-106 [PMID: 23827783]
  146. Front Plant Sci. 2017 Oct 18;8:1780 [PMID: 29093724]
  147. Plant Mol Biol. 2022 Jun;109(3):271-282 [PMID: 34825349]
  148. Plant Mol Biol. 2022 Mar;108(4-5):429-442 [PMID: 34792751]
  149. N Biotechnol. 2013 Jan 25;30(2):136-43 [PMID: 22683498]
  150. J Agric Food Chem. 2012 Apr 18;60(15):3861-6 [PMID: 22458891]
  151. Plant Genome. 2017 Nov;10(3): [PMID: 29293806]
  152. Hortic Res. 2023 Oct 05;10(11):uhad200 [PMID: 38023477]

Word Cloud

Created with Highcharts 10.0.0cassavabreedinggenomicprovidegeneCrantztropicalstarchperspectiveinbreedingselectioneditingsummaryadvancementsqualitycontentgeneticimprovementmodelCassavastaplefood800millionpeoplesubtropicalregionsworldindustrialutilizationbioethanolanimalfeedstillcontinuouslyexpanding1970ssignificantscientificeffortsundertakenimprovedespiteconsiderableeconomicsocialsignificanceShorteningcycleimprovingefficiencyalwaysfocusstudyreviewglobalcurrentstatusgermplasmresourcesexplorediverseapplicationsmethodshybridizationpolyploidyAdditionallyoverviewleastsixnearlycompletegenomesequencesestablishedbasedmoderntechniquesachievementssubstantiallysupportedadvancingdiscoverynewvarietiesFurthermorecassava'sfunctionalgenomicsconcentratingimportanttraitsdrymattertolerancepostharvestphysiologicaldeteriorationnutritionalstressresistancealsocomprehensivemilestoneeventskeypast50 yearsFinallyputforwarddevelopingsuper-hybridsbuildingpopulationemphasizegenerationtriploidcassavaswellusingtechnologyallowingplantservebasicbiologicalresearchmolecularAdvancementsstrategies:conventionalapproaches

Similar Articles

Cited By