An explainable multi-objective hybrid machine learning model for reducing heart failure mortality.

F M Javed Mehedi Shamrat, Majdi Khalid, Thamir M Qadah, Majed Farrash, Hanan Alshanbari
Author Information
  1. F M Javed Mehedi Shamrat: Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia. ORCID
  2. Majdi Khalid: Department of Computer Science and Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia. ORCID
  3. Thamir M Qadah: Department of Computer and Network Engineering, Collge of Computing, Umm Al-Qura University, Makkah, Saudi Arabia. ORCID
  4. Majed Farrash: Department of Computer Science and Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia.
  5. Hanan Alshanbari: Department of Computer Science and Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia.

Abstract

As the world grapples with pandemics and increasing stress levels among individuals, heart failure (HF) has emerged as a prominent cause of mortality on a global scale. The most effective approach to improving the chances of individuals' survival is to diagnose this condition at an early stage. Researchers widely utilize supervised feature selection techniques alongside conventional standalone machine learning (ML) algorithms to achieve the goal. However, these approaches may not consistently demonstrate robust performance when applied to data that they have not encountered before, and struggle to discern intricate patterns within the data. Hence, we present a Multi-objective Stacked Enable Hybrid Model (MO-SEHM), that aims to find out the best feature subsets out of numerous different sets, considering multiple objectives. The Stacked Enable Hybrid Model (SEHM) plays the role of classifier and integrates with a multi-objective feature selection method, the Non-dominated Sorting Genetic Algorithm II (NSGA-II). We employed an HF dataset from the Faisalabad Institute of Cardiology (FIOC) and evaluated six ML models, including SEHM with and without NSGA-II for experimental purposes. The Pareto front (PF) demonstrates that our introduced MO-SEHM surpasses the other models, obtaining 94.87% accuracy with the nine relevant features. Finally, we have applied Local Interpretable Model-agnostic Explanations (LIME) with MO-SEHM to explain the reasons for individual outcomes, which makes our model transparent to the patients and stakeholders.

Keywords

References

  1. BMC Med Inform Decis Mak. 2020 Feb 3;20(1):16 [PMID: 32013925]
  2. Front Cardiovasc Med. 2023 Aug 01;10:1219586 [PMID: 37600061]
  3. Heliyon. 2024 Aug 20;10(17):e36556 [PMID: 39687050]
  4. Nonlinear Dyn. 2021;106(2):1453-1475 [PMID: 34025034]
  5. Front Med (Lausanne). 2024 Mar 27;11:1285067 [PMID: 38633310]
  6. Eur Heart J. 2021 Sep 21;42(36):3599-3726 [PMID: 34447992]
  7. Math Biosci Eng. 2020 Nov 19;18(1):69-91 [PMID: 33525081]
  8. J Transl Med. 2022 Mar 18;20(1):136 [PMID: 35303896]
  9. Front Cardiovasc Med. 2023 Jan 11;9:1032524 [PMID: 36712268]
  10. J Med Internet Res. 2022 Aug 9;24(8):e38082 [PMID: 35943767]
  11. Sci Rep. 2024 Oct 7;14(1):23277 [PMID: 39375427]
  12. BMJ. 2021 Mar 23;372:n461 [PMID: 33758001]
  13. Front Digit Health. 2023 Nov 16;5:1279644 [PMID: 38034907]
  14. Comput Intell Neurosci. 2023 Mar 14;2023:9266889 [PMID: 36959840]
  15. Sci Rep. 2023 Dec 18;13(1):22874 [PMID: 38129433]
  16. Card Fail Rev. 2023 Jul 27;9:e11 [PMID: 37547123]
  17. Eur J Heart Fail. 2023 Sep;25(9):1507-1525 [PMID: 37560778]
  18. Diagnostics (Basel). 2021 Oct 10;11(10): [PMID: 34679561]
  19. Diagnostics (Basel). 2023 Jun 02;13(11): [PMID: 37296800]
  20. Circulation. 2021 Feb 16;143(7):650-660 [PMID: 32951451]

Word Cloud

Created with Highcharts 10.0.0MO-SEHMfailurefeatureselectionStackedEnableHybridModelNSGA-IIheartHFmortalitymachinelearningMLapplieddataMulti-objectiveSEHMmulti-objectivemodelsLocalmodelworldgrapplespandemicsincreasingstresslevelsamongindividualsemergedprominentcauseglobalscaleeffectiveapproachimprovingchancesindividuals'survivaldiagnoseconditionearlystageResearcherswidelyutilizesupervisedtechniquesalongsideconventionalstandalonealgorithmsachievegoalHoweverapproachesmayconsistentlydemonstraterobustperformanceencounteredstrugglediscernintricatepatternswithinHencepresentaimsfindbestsubsetsnumerousdifferentsetsconsideringmultipleobjectivesplaysroleclassifierintegratesmethodNon-dominatedSortingGeneticAlgorithmIIemployeddatasetFaisalabadInstituteCardiologyFIOCevaluatedsixincludingwithoutexperimentalpurposesParetofrontPFdemonstratesintroducedsurpassesobtaining9487%accuracyninerelevantfeaturesFinallyInterpretableModel-agnosticExplanationsLIMEexplainreasonsindividualoutcomesmakestransparentpatientsstakeholdersexplainablehybridreducingFeatureHeartinterpretablemodel-agnosticexplanations

Similar Articles

Cited By

No available data.