Hypertensive women with dyspnea exhibit an unfavorable central blood pressure response to exercise.

Paulina Skalska, Ma��gorzata Kurpaska, Ma��gorzata Banak, Pawe�� Krzesi��ski
Author Information
  1. Paulina Skalska: Department of Cardiology and Internal Medicine, Military Institute of Medicine National Research Institute, Warsaw, Poland. plis@wim.mil.pl.
  2. Ma��gorzata Kurpaska: Department of Cardiology and Internal Medicine, Military Institute of Medicine National Research Institute, Warsaw, Poland.
  3. Ma��gorzata Banak: Department of Cardiology and Internal Medicine, Military Institute of Medicine National Research Institute, Warsaw, Poland.
  4. Pawe�� Krzesi��ski: Department of Cardiology and Internal Medicine, Military Institute of Medicine National Research Institute, Warsaw, Poland.

Abstract

Limited exercise tolerance and dyspnea in patients with uncomplicated hypertension may pose a diagnostic challenge, particularly when blood pressure is normal and assessment results do not support a diagnosis of heart failure. The purpose of this study was to assess the differences in central blood pressure (cBP) response to exercise between females with hypertension and good exercise tolerance (non-dyspneic females, nDFs; n���=���27) and those with dyspnea on exertion (dyspneic females, DFs; n���=���25). We also investigated the relations of cBP and its dynamics with peak oxygen consumption (peak VO) and peak heart rate (peak HR) assessed by cardiopulmonary exercise test (CPET) and peak cardiac output (peak CO) assessed by impedance cardiography. Fifty-two females (mean age 54.5��������8.2 years) underwent applanation tonometry during CPET to assess the augmentation index (AIx), cBP, and central pulse pressure (cPP) before exercise (REST), at minute 3-rd of exercise (Ex), and at minutes: 1-st (R1) and 4-th of post-exercise rest (R2). In comparison with nDFs, DFs showed significantly higher cPP_Ex, AIx_Ex, and AIx_R1. The two subgroups showed no differences in cPP or Alx values either before exercise or at R2. In comparison with nDFs, the DFs had a less pronounced change in AIx values during post-exercise rest. There were negative correlations between peak HR and: AIx_R1, AIx_R2, change in AIx (R1-R2), between peak VO and: AIx_R1, AIx_R1-R2; between peak CO and: AIx_R1, AIx_R2, AIx_R1-R2. DFs presented a different cBP response to exercise than nDFs. Assessing cBP via applanation tonometry may prove useful in identifying hemodynamic abnormalities associated with limited exercise tolerance.

Keywords

References

  1. Kurpaska M, Krzesi��ski P, Gielerak G, Uzi��b��o-��yczkowska B, Banak M, Sta��czyk A, et al. Exercise impedance cardiography reveals impaired hemodynamic responses to exercise in hypertensives with dyspnea. Hypertens Res. 2019;42:211���22. https://doi.org/10.1038/s41440-018-0145-y . [DOI: 10.1038/s41440-018-0145-y]
  2. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753���60. https://doi.org/10.1016/j.jacc.2005.07.037 . [DOI: 10.1016/j.jacc.2005.07.037]
  3. Krzesi��ski P, Sta��czyk A, Gielerak G, Uzi��b��o-��yczkowska B, Kurpaska M, Piotrowicz K, et al. Sex determines cardiovascular hemodynamics in hypertension. J Hum Hypertens. 2015;29:610���7. https://doi.org/10.1038/jhh.2014.134 . [DOI: 10.1038/jhh.2014.134]
  4. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105���16. https://doi.org/10.1161/01.cir.62.1.105 . [DOI: 10.1161/01.cir.62.1.105]
  5. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197���203. https://doi.org/10.1161/HYPERTENSIONAHA.107.089078 . [DOI: 10.1161/HYPERTENSIONAHA.107.089078]
  6. McEniery, Yasmin CM, McDonnell B, Munnery M, Wallace SM, Rowe CV, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476���82. https://doi.org/10.1161/HYPERTENSIONAHA.107.105445 . [DOI: 10.1161/HYPERTENSIONAHA.107.105445]
  7. Sharman JE, McEniery CM, Campbell RI, Coombes JS, Wilkinson IB, Cockcroft JR. The effect of exercise on large artery haemodynamics in healthy young men. Eur J Clin Invest. 2005;35:738���44. https://doi.org/10.1111/j.1365-2362.2005.01578.x . [DOI: 10.1111/j.1365-2362.2005.01578.x]
  8. Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, et al. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 2006;47:1203���8. https://doi.org/10.1161/01.HYP.0000223013.60612.72 . [DOI: 10.1161/01.HYP.0000223013.60612.72]
  9. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15:24���30. https://doi.org/10.1016/s0895-7061(01)02252-x . [DOI: 10.1016/s0895-7061(01)02252-x]
  10. Payne RA, Teh CH, Webb DJ, Maxwell SR. A generalized arterial transfer function derived at rest underestimates augmentation of central pressure after exercise. J Hypertens. 2007;25:2266���72. https://doi.org/10.1097/HJH.0b013e3282ef96fa . [DOI: 10.1097/HJH.0b013e3282ef96fa]
  11. Yan H, Ranadive SM, Heffernan KS, Lane AD, Kappus RM, Cook MD, et al. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise. Am J Physiol Heart Circ Physiol. 2014;306:H60���H68. https://doi.org/10.1152/ajpheart.00710.2013 . [DOI: 10.1152/ajpheart.00710.2013]
  12. Shim CY, Yang WI, Park S, Kang MK, Ko YG, Choi D, et al. Overweight and its association with aortic pressure wave reflection after exercise. Am J Hypertens. 2011;24:1136���42. https://doi.org/10.1038/ajh.2011.121 . [DOI: 10.1038/ajh.2011.121]
  13. Akazawa N, Ra SG, Sugawara J, Maeda S. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women. Front Physiol. 2015;6:268 https://doi.org/10.3389/fphys.2015.00268 . [DOI: 10.3389/fphys.2015.00268]
  14. Zern EK, Ho JE, Panah LG, Lau ES, Liu E, Farrell R, et al. Exercise intolerance in heart failure with preserved ejection fraction: arterial stiffness and aabnormal left ventricular hemodynamic responses during exercise. J Card Fail. 2021;27:625���34. https://doi.org/10.1016/j.cardfail.2021 . [DOI: 10.1016/j.cardfail.2021]
  15. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129���2200. https://doi.org/10.1093/eurheartj/ehw128 . [DOI: 10.1093/eurheartj/ehw128]
  16. De la Torre Hern��ndez JM, Veiga Fernandez G, et al. Validation study to determine the accuracy of central blood pressure measurement using the SphygmoCor XCEL cuff device in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. J Clin Hypertens. 2021;23:1165���75. https://doi.org/10.1111/jch.14245 . [DOI: 10.1111/jch.14245]
  17. Townsend RR, Rosendorff C, Nichols WW, Edwards DG, Chirinos JA, Fernhall B, et al. American Society of Hypertension position paper: central blood pressure waveforms in health and disease. J Am SocHypertens. 2016;10:22���33. https://doi.org/10.1016/j.jash.2015.10.012 . [DOI: 10.1016/j.jash.2015.10.012]
  18. Kubalski P, Manitius J. Sztywno���� t��tnic, ci��nienie centralne, wsp����czynnik wzmocnienia-kompendium nie tylko dla hipertensjologa. Chor Serca Naczy. 2008;5:61���7.
  19. Morales-Acuna F, Ratcliffe B, Harrison C, Crowe S, Bockover E, Pawlak R, et al. Comparison between cuff-based and radial tonometry exercise-induced central blood pressure. Eur J Appl Physiol. 2019;119:901���11. https://doi.org/10.1007/s00421-019-04079-9 . [DOI: 10.1007/s00421-019-04079-9]
  20. Endes S, Schaffner E, Caviezel S, Dratva J, Autenrieth CS, Wanner M, et al. Physical activity is associated with lower arterial stiffness in older adults: results of the SAPALDIA 3 Cohort Study. Eur J Epidemiol. 2016;31:275���85. https://doi.org/10.1007/s10654-015-0076-8 . [DOI: 10.1007/s10654-015-0076-8]
  21. Binder J, Bailey KR, Seward JB, Squires RW, Kunihiro T, Hensrud DD, et al. Aortic augmentation index is inversely associated with cardiorespiratory fitness in men without known coronary heart disease. Am J Hypertens. 2006;19:1019���24. https://doi.org/10.1016/j.amjhyper.2006.02.012 . [DOI: 10.1016/j.amjhyper.2006.02.012]
  22. Alves AJ, Oliveira NL, Lopes S, Ruescas-Nicolau MA, Teixeira M, Oliveira J, et al. Arterial stiffness is related to impaired exercise capacity in patients with coronary artery disease and history of myocardial infarction. Heart Lung Circ. 2019;28:1614���21. https://doi.org/10.1016/j.hlc.2018.08.023 . [DOI: 10.1016/j.hlc.2018.08.023]
  23. Tazawa Y, Mori N, Ogawa Y, Ito O, Kohzuki M. Arterial stiffness measured with the cuff oscillometric method is predictive of exercise capacity in patients with cardiac diseases. Tohoku J Exp Med. 2016;239:127���34. https://doi.org/10.1620/tjem.239.127 . [DOI: 10.1620/tjem.239.127]
  24. Stock JM, Chirinos JA, Edwards DG. Lower-body dynamic exercise reduces wave reflection in healthy young adults. Exp Physiol. 2021;106:1720���30. https://doi.org/10.1113/EP089581 . [DOI: 10.1113/EP089581]
  25. Dawson EA, Black MA, Pybis J, Cable NT, Green DJ. The impact of exercise on derived measures of central pressure and augmentation index obtained from the SphygmoCor device. J Appl Physiol. 2009;106:1896���901. https://doi.org/10.1152/japplphysiol.91564.2008 . [DOI: 10.1152/japplphysiol.91564.2008]
  26. Sharman JE, Davies JE, Jenkins C, Marwick TH. Augmentation index, left ventricular contractility, and wave reflection. Hypertension. 2009;54:1099���105. https://doi.org/10.1161/HYPERTENSIONAHA.109.133066 . [DOI: 10.1161/HYPERTENSIONAHA.109.133066]
  27. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525:263���70. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00263.x . [DOI: 10.1111/j.1469-7793.2000.t01-1-00263.x]
  28. Nichols W, O���Rourke MF, Vlachopoulos C. Mc���Donald���s blood flow in arteries: theoretical, experimental, and clinical principles. 5th ed. London: Arnold;2005.
  29. Malik AR, Kondragunta V, Kullo IJ. Forearm vascular reactivity and arterial stiffness in asymptomatic adults from the community. Hypertension. 2008;51:1512���8. https://doi.org/10.1161/HYPERTENSIONAHA.107.106088 . [DOI: 10.1161/HYPERTENSIONAHA.107.106088]
  30. Shim CY. Arterial-cardiac interaction: the concept and implications. J Cardiovasc Ultrasound. 2011;19:62���66. https://doi.org/10.4250/jcu.2011.19.2.62 . [DOI: 10.4250/jcu.2011.19.2.62]
  31. Canepa M, Alghatrif M, Strait JB, Cheng HM, Chuang SY, Chen CH, et al. Early contribution of arterial wave reflection to left ventricular relaxation abnormalities in a community-dwelling population of normotensive and untreated hypertensive men and women. J Hum Hypertens. 2014;28:85���91. https://doi.org/10.1038/jhh.2013.86 . [DOI: 10.1038/jhh.2013.86]
  32. Nichols WW, O���Rourke MF. McDonald���s blood flow in arteries: theoretic, experimental and clinical principles. 4th ed. London: Edward Arnold; 1998. p. 23���40.
  33. Molisz A, Schmederer Z, Siebert J, Kadamani T, Glasner P, Ros��onkiewicz K, et al. Haemodynamic parameters in postmenopausal women - beneficial effect of moderate continuous exercise training. Ann Agric Environ Med. 2019;26:425���8. https://doi.org/10.26444/aaem/100620 . [DOI: 10.26444/aaem/100620]
  34. Pal S, Radavelli-Bagatini S, Ho S. Potential benefits of exercise on blood pressure and vascular function. J Am Soc Hypertens. 2013;7:494���506. https://doi.org/10.1016/j.jash.2013.07.004 . [DOI: 10.1016/j.jash.2013.07.004]
  35. Tabara Y, Yuasa T, Oshiumi A, Kobayashi T, Miyawaki Y, Miki T, et al. Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly. Hypertens Res. 2007;30:895���902. https://doi.org/10.1291/hypres.30.895 . [DOI: 10.1291/hypres.30.895]
  36. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270���5. https://doi.org/10.1161/01.cir.102.11.1270 . [DOI: 10.1161/01.cir.102.11.1270]
  37. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102:1351���7. https://doi.org/10.1161/01.cir.102.12.1351 . [DOI: 10.1161/01.cir.102.12.1351]

Word Cloud

Created with Highcharts 10.0.0exercisepeakcBPtolerancepressurefemalesnDFsDFsAIx_R1dyspneabloodcentralresponsetonometryAIxand:hypertensionmayheartassessdifferencesVOHRassessedCPETCOapplanationcPPpost-exerciserestR2comparisonshowedvalueschangeAIx_R2AIx_R1-R2Limitedpatientsuncomplicatedposediagnosticchallengeparticularlynormalassessmentresultssupportdiagnosisfailurepurposestudygoodnon-dyspneicn���=���27exertiondyspneicn���=���25alsoinvestigatedrelationsdynamicsoxygenconsumptionratecardiopulmonarytestcardiacoutputimpedancecardiographyFifty-twomeanage545��������82yearsunderwentaugmentationindexpulseRESTminute3-rdExminutes:1-stR14-thsignificantlyhighercPP_ExAIx_ExtwosubgroupsAlxeitherlesspronouncednegativecorrelationsR1-R2presenteddifferentAssessingviaproveusefulidentifyinghemodynamicabnormalitiesassociatedlimitedHypertensivewomenexhibitunfavorableApplanationDyspneaExerciseFemaleHypertension

Similar Articles

Cited By

No available data.