Prophages in : Distribution and genetic diversity.

Paolo Gaibani, Rocco Latorre
Author Information
  1. Paolo Gaibani: Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy.
  2. Rocco Latorre: NYU Pain Research Center, New York University, USA.

Abstract

Objectives: We evaluated the distribution, epidemiology, and relationships of prophage regions among 500 group genomes.
Methods: Average nucleotide identity (ANI) analysis was carried out to characterize the genome at the species level and phylogenetic analysis was performed to identify the genomic relationship among genomes Prophages in B. fragilis genomes were performed with PHASTEST and pairwise comparison of prophage regions was performed by using Jspecies.
Results: Prophages were found in 67.6 % (338/500) of genomes with a degree of nucleotide identity >80 % in 54.2 % of these regions. Comparison in the total number of prophages demonstrated that strains belonging to division I showed a higher number of these regions than strains of division II ( < 0.01). Characterization of prophage sequences revealed that strains belonging to division I exhibited a lower conservation degree ( nucleotide identity ≥90 %) of the nucleotide regions than strains belonging to division II (71.88 % vs 90.0 %;  < 0.0001) and strains harbouring toxin-gene showed a lower conservation degree ( nucleotide identity ≥70 %) than toxin-negative strains (70.0 % vs 95.4 %;  < 0.0001).
Conclusions: We demonstrated a wide distribution and high conservation degree of the prophages among genomes. Diversity observed within prophages could reflect the major adaptability of pathogenic strains and that low pressure exerted in the gut of healthy individuals could be related to the high conservation degree of prophage regions in human commensal strains.

Keywords

References

  1. Malays J Med Sci. 2020 Jul;27(4):9-21 [PMID: 32863742]
  2. Appl Environ Microbiol. 2019 Dec 13;86(1): [PMID: 31676478]
  3. Microbiology (Reading). 2022 Apr;168(4): [PMID: 35404220]
  4. Front Oncol. 2023 Sep 29;13:1224669 [PMID: 37841431]
  5. mBio. 2022 Jan 18;13(1):e0360321 [PMID: 35038926]
  6. Mol Microbiol. 2004 Jul;53(1):9-18 [PMID: 15225299]
  7. BMC Cancer. 2019 Sep 5;19(1):879 [PMID: 31488085]
  8. Int J Mol Sci. 2023 Jan 31;24(3): [PMID: 36769020]
  9. Neoplasia. 2022 Jul;29:100797 [PMID: 35461079]
  10. Nat Rev Microbiol. 2015 Dec;13(12):777-86 [PMID: 26548913]
  11. mSystems. 2021 Jun 29;6(3):e0121120 [PMID: 34060909]
  12. Nat Med. 2009 Sep;15(9):1016-22 [PMID: 19701202]
  13. Infect Immun. 2022 Jan 25;90(1):e0032121 [PMID: 34606367]
  14. mBio. 2020 Mar 10;11(2): [PMID: 32156804]
  15. Nat Rev Microbiol. 2022 Dec;20(12):737-749 [PMID: 35773472]
  16. Nat Commun. 2024 Feb 22;15(1):1638 [PMID: 38388538]
  17. J Med Microbiol. 2023 Nov;72(11): [PMID: 37910167]
  18. Infect Genet Evol. 2023 Sep;113:105489 [PMID: 37572952]
  19. Nucleic Acids Res. 2023 Jul 5;51(W1):W443-W450 [PMID: 37194694]
  20. J Antimicrob Chemother. 2022 May 29;77(6):1570-1577 [PMID: 35373297]
  21. Sci Adv. 2023 Sep 29;9(39):eadg4015 [PMID: 37774017]

Word Cloud

Created with Highcharts 10.0.0strainsregionsgenomesnucleotidedegreeprophageidentityProphagesdivisionconservationamongperformedprophagesbelonging< 0distributiongroupanalysisfragilisnumberdemonstratedshowedIIlowervs0 %0001highObjectives:evaluatedepidemiologyrelationships500Methods:AverageANIcarriedcharacterizegenomespecieslevelphylogeneticidentifygenomicrelationshipBPHASTESTpairwisecomparisonusingJspeciesResults:found676 %338/500>80 %542 %Comparisontotalhigher01Characterizationsequencesrevealedexhibited≥90 %7188 %90harbouringtoxin-gene≥70 %toxin-negative70954 %Conclusions:wideDiversityobservedwithinreflectmajoradaptabilitypathogeniclowpressureexertedguthealthyindividualsrelatedhumancommensal:DistributiongeneticdiversityBacteroidesEnvironmentsFragilysinPathogenicVirulencefactors

Similar Articles

Cited By