Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test.

Neha Rajput, Kush Parikh, Ada Squires, Kailyn K Fields, Matheu Wong, Dea Kanani, Justin W Kenney
Author Information
  1. Neha Rajput: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  2. Kush Parikh: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  3. Ada Squires: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  4. Kailyn K Fields: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  5. Matheu Wong: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  6. Dea Kanani: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
  7. Justin W Kenney: Department of Biological Sciences, Wayne State University, Detroit, MI 48202.

Abstract

Zebrafish have gained prominence as a model organism in neuroscience over the past several decades, generating key insight into the development and functioning of the vertebrate brain. However, techniques for whole brain mapping in adult stage zebrafish are lacking. Here, we describe a pipeline built using open-source tools for whole-brain activity mapping in adult zebrafish. Our pipeline combines advances in histology, microscopy, and machine learning to capture activity across the entirety of the brain. Following tissue clearing, whole brain images are captured using light-sheet microscopy and registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation. By way of example, we used our pipeline to measure brain activity after zebrafish were subject to the novel tank test, one of the most widely used behaviors in adult zebrafish. levels peaked 15 minutes following behavior and several regions, including those containing serotoninergic and dopaminergic neurons, were active during exploration. Finally, we generated a novel tank test functional brain network. This revealed that several regions of the subpallium form a cohesive sub-network during exploration. Functional interconnections between the subpallium and other regions appear to be mediated primarily by ventral nucleus of the ventral telencephalon (Vv), the olfactory bulb, and the anterior part of the parvocellular preoptic nucleus (PPa). Taken together, our pipeline enables whole-brain activity mapping in adult zebrafish while providing insight into neural basis for the novel tank test. Zebrafish have grown in popularity as a model organism over the past several decades due to their low cost, ease of genetic manipulation, and similarity to other vertebrates like humans and rodents. However, to date, tools for whole-brain mapping in adult stage animals has been lacking. Here, we present an open-source pipeline for whole-brain mapping in adult zebrafish. We demonstrate the use of our pipeline by generating a functional brain network for one of the most widely used behavioral assays in adult zebrafish, the novel tank test. We found that exploration of a novel tank engages the olfactory bulb and a network of subpallial regions that correspond to the mammalian subpallial amygdala and basal ganglia.

References

  1. PLoS Comput Biol. 2021 May 28;17(5):e1009074 [PMID: 34048426]
  2. Front Neurosci. 2020 Jul 16;14:608 [PMID: 32765204]
  3. PLoS Biol. 2020 Apr 20;18(4):e3000701 [PMID: 32310946]
  4. Brain Res Mol Brain Res. 1994 Feb;21(3-4):247-55 [PMID: 8170349]
  5. Commun Biol. 2023 Jun 5;6(1):605 [PMID: 37277453]
  6. Behav Brain Res. 2010 Apr 2;208(2):450-7 [PMID: 20035794]
  7. Neurosci Biobehav Rev. 2020 Sep;116:426-435 [PMID: 32681940]
  8. Neuropharmacology. 2013 Aug;71:83-97 [PMID: 23541719]
  9. J Neurol. 2017 Apr;264(4):631-638 [PMID: 27393116]
  10. Cell. 2016 Jun 16;165(7):1789-1802 [PMID: 27238021]
  11. Annu Rev Neurosci. 2019 Jul 8;42:295-313 [PMID: 31283896]
  12. Zebrafish. 2015 Feb;12(1):121-3 [PMID: 25548979]
  13. J Neurosci. 2001 Jul 15;21(14):5089-98 [PMID: 11438584]
  14. Behav Brain Res. 2010 Mar 17;208(1):56-62 [PMID: 19896505]
  15. Curr Biol. 2016 Oct 24;26(20):R1088-R1100 [PMID: 27780050]
  16. Behav Brain Res. 2015 Jan 1;276:171-80 [PMID: 24954772]
  17. Oxf Open Neurosci. 2023 Jan 06;2:kvac018 [PMID: 37649777]
  18. Neurochem Int. 1998 Oct;33(4):287-97 [PMID: 9840219]
  19. Zebrafish. 2014 Aug;11(4):325-40 [PMID: 24921670]
  20. Zebrafish. 2013 Mar;10(1):70-86 [PMID: 23590400]
  21. Development. 2018 Jun 26;145(12): [PMID: 29945988]
  22. eNeuro. 2024 Jul 10;11(7): [PMID: 38918052]
  23. Elife. 2016 Mar 22;5:e12741 [PMID: 27003593]
  24. Gigascience. 2017 Aug 1;6(8):1-15 [PMID: 28873968]
  25. J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573 [PMID: 18159217]
  26. J Exp Biol. 2024 Jun 15;227(12): [PMID: 38842023]
  27. Nat Methods. 2015 Nov;12(11):1039-46 [PMID: 26778924]
  28. Sci Rep. 2018 May 1;8(1):6818 [PMID: 29717159]
  29. Neuron. 2017 Apr 19;94(2):363-374.e4 [PMID: 28426969]
  30. Pharmacol Biochem Behav. 2017 Feb;153:18-31 [PMID: 27965084]
  31. Int Rev Neurobiol. 1981;22:251-86 [PMID: 7024168]
  32. Brain Behav Evol. 2022;97(6):321-335 [PMID: 35760049]
  33. Nat Commun. 2014 Apr 09;5:3639 [PMID: 24714622]
  34. IEEE Trans Med Imaging. 2007 Apr;26(4):427-51 [PMID: 17427731]
  35. Dev Biol. 1988 Mar;126(1):115-28 [PMID: 3342929]
  36. Nat Methods. 2015 Jan;12(1):30-4 [PMID: 25549268]
  37. Elife. 2021 Nov 22;10: [PMID: 34806976]
  38. Curr Opin Neurobiol. 2020 Dec;65:88-99 [PMID: 33221591]
  39. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  40. Biol Open. 2022 Aug 15;11(8): [PMID: 36039864]
  41. PLoS Comput Biol. 2017 Jan 11;13(1):e1005305 [PMID: 28076353]
  42. Behav Brain Res. 2012 Jan 1;226(1):66-76 [PMID: 21920389]
  43. PLoS Comput Biol. 2013;9(1):e1002853 [PMID: 23300432]
  44. PLoS One. 2008 Apr 30;3(4):e0002051 [PMID: 18446219]
  45. Curr Biol. 2024 Feb 5;34(3):489-504.e7 [PMID: 38211586]
  46. J Neuroendocrinol. 2023 Sep;35(9):e13280 [PMID: 37165563]
  47. J Neurophysiol. 2012 Mar;107(5):1313-24 [PMID: 22157125]
  48. IEEE Trans Med Imaging. 2011 Nov;30(11):1901-20 [PMID: 21632295]
  49. Dev Reprod. 2015 Jun;19(2):61-7 [PMID: 27004262]
  50. Neuron. 2014 Mar 19;81(6):1328-1343 [PMID: 24656252]
  51. Neurophotonics. 2015 Oct;2(4):041407 [PMID: 26730396]
  52. Neuroinformatics. 2019 Jan;17(1):83-102 [PMID: 29946897]
  53. Brain Struct Funct. 2021 Mar;226(2):481-499 [PMID: 33386994]
  54. Nature. 2012 May 09;485(7399):471-7 [PMID: 22622571]
  55. Curr Opin Neurobiol. 2018 Apr;49:141-147 [PMID: 29522976]
  56. Nat Protoc. 2010 Nov;5(11):1786-99 [PMID: 21030954]
  57. Cell. 1989 Dec 22;59(6):999-1007 [PMID: 2513130]
  58. Neuroscience. 2020 Oct 15;446:199-212 [PMID: 32707292]
  59. Neuroscience. 2005;131(3):759-68 [PMID: 15730879]
  60. Front Behav Neurosci. 2022 Feb 16;16:784835 [PMID: 35250500]
  61. J Comp Neurol. 2004 Jun 14;474(1):75-107 [PMID: 15156580]
  62. Pharmacol Biochem Behav. 2014 Nov;126:170-80 [PMID: 25284132]
  63. Sci Adv. 2023 Feb 22;9(8):eade9909 [PMID: 36812331]
  64. J Neurosci. 2012 May 16;32(20):6830-40 [PMID: 22593052]
  65. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83 [PMID: 21372320]
  66. Brain Res Mol Brain Res. 2002 Dec 30;109(1-2):221-5 [PMID: 12531532]
  67. J Comp Neurol. 1995 Jul 24;358(2):247-59 [PMID: 7560285]
  68. Neuroimage. 2011 Feb 1;54(3):2033-44 [PMID: 20851191]
  69. Curr Protoc Neurosci. 2018 Jul;84(1):e49 [PMID: 29944213]
  70. Neurosci Biobehav Rev. 2023 Jan;144:104978 [PMID: 36442644]
  71. Prog Neuropsychopharmacol Biol Psychiatry. 2023 Jul 13;125:110753 [PMID: 36934998]
  72. Biochim Biophys Acta. 2012 Jun;1819(6):494-506 [PMID: 22387213]
  73. Elife. 2021 Jul 13;10: [PMID: 34253289]
  74. Neuroimage. 2009 Jul 1;46(3):786-802 [PMID: 19195496]
  75. Sci Rep. 2021 Feb 4;11(1):3148 [PMID: 33542258]
  76. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10545-9 [PMID: 7479837]
  77. Curr Opin Neurobiol. 2021 Jun;68:124-136 [PMID: 33940499]
  78. J Comp Neurol. 2014 May 1;522(7):1542-64 [PMID: 24127437]
  79. Cell. 2014 Nov 6;159(4):896-910 [PMID: 25417164]
  80. Commun Biol. 2023 Jun 13;6(1):633 [PMID: 37308619]
  81. Pharmacol Biochem Behav. 2017 Jun;157:1-8 [PMID: 28408289]
  82. BMC Bioinformatics. 2012 Nov 27;13:316 [PMID: 23181553]
  83. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2581-6 [PMID: 21262817]
  84. J Comp Neurol. 2007 Oct 20;504(6):631-45 [PMID: 17722029]
  85. Science. 2023 Mar 24;379(6638):1232-1237 [PMID: 36952426]
  86. Curr Biol. 2022 Apr 11;32(7):1497-1510.e5 [PMID: 35219430]
  87. J Neurosci Methods. 2014 Aug 30;234:59-65 [PMID: 24793400]
  88. Neurosci Biobehav Rev. 2005;29(4-5):627-47 [PMID: 15925697]
  89. J Neurosci. 2009 Apr 15;29(15):4756-67 [PMID: 19369545]
  90. Nat Rev Methods Primers. 2021;1(1): [PMID: 35128463]
  91. J Neurosci. 2015 Feb 18;35(7):3034-47 [PMID: 25698741]

Grants

  1. R35 GM142566/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0brainadultzebrafishmappingpipelinenoveltanktestseveralwhole-brainactivityregionsnetworkusedexplorationfunctionalZebrafishmodelorganismpastdecadesgeneratinginsightHoweverwholestagelackingusingopen-sourcetoolsmicroscopyonewidelysubpalliumventralnucleusolfactorybulbsubpallialgainedprominenceneurosciencekeydevelopmentfunctioningvertebratetechniquesdescribebuiltcombinesadvanceshistologymachinelearningcaptureacrossentiretyFollowingtissueclearingimagescapturedlight-sheetregisteredrecentlycreatedatlasAZBAautomatedsegmentationwayexamplemeasuresubjectbehaviorslevelspeaked15minutesfollowingbehaviorincludingcontainingserotoninergicdopaminergicneuronsactiveFinallygeneratedrevealedformcohesivesub-networkFunctionalinterconnectionsappearmediatedprimarilytelencephalonVvanteriorpartparvocellularpreopticPPaTakentogetherenablesprovidingneuralbasisgrownpopularityduelowcosteasegeneticmanipulationsimilarityvertebrateslikehumansrodentsdateanimalspresentdemonstrateusebehavioralassaysfoundengagescorrespondmammalianamygdalabasalgangliaWhole-brainidentificationunderlying

Similar Articles

Cited By

No available data.