Glycyrrhizin enhances the antitumor activity of cisplatin in non���small cell lung cancer cells by influencing DNA damage and apoptosis.

Zhufeng Tong, Zhen Wang, Jinghan Jiang, Wenqi Fu, Siying Hu
Author Information
  1. Zhufeng Tong: Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.
  2. Zhen Wang: Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.
  3. Jinghan Jiang: Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.
  4. Wenqi Fu: Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.
  5. Siying Hu: Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.

Abstract

The objective of the present study was to elucidate the mechanism by which glycyrrhizin enhances the antitumor activity of cisplatin in non-small cell lung cancer. Initially, A549 cells were treated with different concentrations of glycyrrhizin (0.25-8 mM) or cisplatin (10-160 ��M) for 48 h to investigate the effect of glycyrrhizin combined with cisplatin on A549 cells . Subsequently, A549 cells were divided into control (untreated), CP (20 ��M cisplatin), GL (2 mM glycyrrhizin) and CP + GL (20 ��M cisplatin + 2 mM glycyrrhizin) groups to elucidate the underlying mechanism of glycyrrhizin. After 48 h incubation, the viability and colony-forming ability of the cells were assessed using MTT and colony formation assays. Apoptosis levels and cell cycle progression were analyzed using flow cytometry and western blotting was used to evaluate apoptosis- and cell cycle-related proteins. Additionally, comet assays and western blotting were used to evaluate DNA damage and relevant proteins. The results demonstrated both glycyrrhizin and cisplatin individually reduced A549 cell viability in a concentration-dependent manner. Cisplatin demonstrated a lower half-maximal inhibitory concentration (IC) at higher glycyrrhizin concentrations, with an IC value of ~35 ��M with 2 mM glycyrrhizin. Furthermore, the combined treatment of glycyrrhizin and cisplatin synergistically reduced cell colony-forming ability, induced apoptosis and arrested the cell cycle at the G phase, showing greater efficacy when compared with either treatment individually. In addition, western blotting analysis demonstrated that, in comparison with treatment with cisplatin or glycyrrhizin alone, the combined treatment markedly increased the protein expression levels of B-cell lymphoma 2-associated X protein, cleaved-caspase-3/caspase-3, ��H2AX, phosphorylated-checkpoint kinase 1 and phosphorylated-p53/p53, while notably reducing the protein levels of B-cell lymphoma 2, cyclin D1, cyclin-dependent kinase 2 and cyclin-dependent kinase 4. The findings of the present study indicate that glycyrrhizin enhances the antitumor efficacy of cisplatin in non-small cell lung cancer cells by modulating DNA damage and apoptosis.

Keywords

References

  1. Biomed Pharmacother. 2017 Nov;95:670-678 [PMID: 28886526]
  2. Int J Oncol. 2007 Dec;31(6):1465-72 [PMID: 17982673]
  3. Front Pharmacol. 2021 Apr 29;12:680589 [PMID: 33995110]
  4. Mini Rev Med Chem. 2020;20(11):942-957 [PMID: 32048967]
  5. Cancer Manag Res. 2020 Apr 24;12:2853-2861 [PMID: 32425599]
  6. Sci Rep. 2024 Oct 23;14(1):24948 [PMID: 39438689]
  7. Phytother Res. 2021 Feb;35(2):629-636 [PMID: 32902005]
  8. Oncol Rep. 2008 Dec;20(6):1387-92 [PMID: 19020719]
  9. Acta Pharmacol Sin. 2021 Sep;42(9):1486-1497 [PMID: 33893396]
  10. J Agric Food Chem. 2022 Feb 16;70(6):1996-2009 [PMID: 35128924]
  11. Asian Pac J Cancer Prev. 2022 Jul 01;23(7):2341-2350 [PMID: 35901340]
  12. Biomolecules. 2022 Mar 17;12(3): [PMID: 35327655]
  13. Cancer Commun (Lond). 2024 Jan;44(1):23-46 [PMID: 37985191]
  14. Molecules. 2022 Aug 25;27(17): [PMID: 36080236]
  15. Xenobiotica. 2009 Dec;39(12):955-63 [PMID: 19831503]
  16. J Exp Clin Cancer Res. 2021 Jun 21;40(1):203 [PMID: 34154613]
  17. Biosci Rep. 2021 Dec 22;41(12): [PMID: 34096570]
  18. Oncol Rep. 2012 Dec;28(6):2069-76 [PMID: 22972479]
  19. J Natl Compr Canc Netw. 2021 Mar 02;19(3):254-266 [PMID: 33668021]
  20. Nat Rev Dis Primers. 2024 Sep 26;10(1):71 [PMID: 39327441]
  21. Int J Mol Sci. 2022 Jan 28;23(3): [PMID: 35163459]
  22. Nutr Res Pract. 2020 Apr;14(2):127-133 [PMID: 32256987]
  23. Nat Rev Clin Oncol. 2020 Jul;17(7):395-417 [PMID: 32203277]
  24. Methods Mol Biol. 2021;2284:343-365 [PMID: 33835452]
  25. Biol Proced Online. 2020 Mar 01;22:5 [PMID: 32140080]
  26. Chem Res Toxicol. 2019 Aug 19;32(8):1469-1486 [PMID: 31353895]
  27. World J Gastrointest Oncol. 2023 Oct 15;15(10):1739-1755 [PMID: 37969408]
  28. Mol Med Rep. 2018 Apr;17(4):5970-5975 [PMID: 29436639]
  29. Front Pharmacol. 2021 Jul 06;12:680674 [PMID: 34295250]
  30. Pharmacol Res. 2022 Apr;178:106138 [PMID: 35192957]
  31. Int J Cancer. 2021 Apr 5;: [PMID: 33818764]
  32. J Ethnopharmacol. 2023 Jan 10;300:115748 [PMID: 36162545]
  33. Front Pharmacol. 2020 Mar 20;11:343 [PMID: 32265714]
  34. Nature. 2018 Jan 24;553(7689):446-454 [PMID: 29364287]
  35. Toxicol In Vitro. 2023 Dec;93:105687 [PMID: 37659683]
  36. FASEB J. 2023 Feb;37(2):e22749 [PMID: 36688808]
  37. Biochem Pharmacol. 2022 Dec;206:115323 [PMID: 36368406]
  38. Cancer Commun (Lond). 2022 Oct;42(10):937-970 [PMID: 36075878]
  39. Chin J Integr Med. 2022 Oct;28(10):930-938 [PMID: 35243583]
  40. Cell Physiol Biochem. 2014;33(2):375-88 [PMID: 24556579]
  41. Nutr Cancer. 2022;74(2):622-639 [PMID: 33691557]
  42. Int J Mol Sci. 2021 Jun 28;22(13): [PMID: 34203270]
  43. PLoS One. 2019 May 24;14(5):e0217578 [PMID: 31125383]
  44. Respir Res. 2020 Aug 10;21(1):210 [PMID: 32778129]
  45. J Agric Food Chem. 2016 Dec 21;64(50):9542-9550 [PMID: 27936791]
  46. Drug Resist Updat. 2023 May;68:100938 [PMID: 36774746]
  47. Curr Med Chem. 2016;23(5):498-517 [PMID: 26758798]
  48. J Pers Med. 2023 Nov 24;13(12): [PMID: 38138866]
  49. Mol Cancer. 2024 Aug 10;23(1):164 [PMID: 39127670]
  50. Mol Med Rep. 2021 Nov;24(5): [PMID: 34505633]
  51. Mayo Clin Proc. 2019 Aug;94(8):1623-1640 [PMID: 31378236]
  52. Cell Physiol Biochem. 2017;41(4):1383-1392 [PMID: 28315871]
  53. World J Gastroenterol. 2015 May 7;21(17):5271-80 [PMID: 25954100]
  54. Nat Commun. 2024 Mar 29;15(1):2759 [PMID: 38553451]
  55. Front Pharmacol. 2023 Aug 15;14:1265172 [PMID: 37649893]
  56. Am J Chin Med. 2020;48(1):223-244 [PMID: 32054305]

Word Cloud

Created with Highcharts 10.0.0glycyrrhizincisplatincellcells2lungcancerA549mM��MDNAdamagetreatmentapoptosisenhancesantitumornon-smallcombinedlevelswesternblottingdemonstratedproteinkinasepresentstudyelucidatemechanismactivityconcentrations48hCP20GL+viabilitycolony-formingabilityusingassayscycleusedevaluateproteinsindividuallyreducedICefficacyB-celllymphomacyclin-dependentobjectiveInitiallytreateddifferent025-810-160investigateeffectSubsequentlydividedcontroluntreatedgroupsunderlyingincubationassessedMTTcolonyformationApoptosisprogressionanalyzedflowcytometryapoptosis-cycle-relatedAdditionallycometrelevantresultsconcentration-dependentmannerCisplatinlowerhalf-maximalinhibitoryconcentrationhighervalue~35FurthermoresynergisticallyinducedarrestedGphaseshowinggreatercomparedeitheradditionanalysiscomparisonalonemarkedlyincreasedexpression2-associatedXcleaved-caspase-3/caspase-3��H2AXphosphorylated-checkpoint1phosphorylated-p53/p53notablyreducingcyclinD14findingsindicatemodulatingGlycyrrhizinnon���smallinfluencing

Similar Articles

Cited By

No available data.