Confronting Earth System Model trends with observations.

Isla R Simpson, Tiffany A Shaw, Paulo Ceppi, Amy C Clement, Erich Fischer, Kevin M Grise, Angeline G Pendergrass, James A Screen, Robert C J Wills, Tim Woollings, Russell Blackport, Joonsuk M Kang, Stephen Po-Chedley
Author Information
  1. Isla R Simpson: National Science Foundation National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  2. Tiffany A Shaw: The University of Chicago, Chicago, IL, USA. ORCID
  3. Paulo Ceppi: Department of Physics, Imperial College London, London, UK. ORCID
  4. Amy C Clement: University of Miami, Miami, FL, USA. ORCID
  5. Erich Fischer: ETH Zurich, Zurich, Switzerland. ORCID
  6. Kevin M Grise: University of Virginia, Charlottesville, VA, USA. ORCID
  7. Angeline G Pendergrass: National Science Foundation National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  8. James A Screen: University of Exeter, Exeter, UK. ORCID
  9. Robert C J Wills: ETH Zurich, Zurich, Switzerland. ORCID
  10. Tim Woollings: University of Oxford, Oxford, UK. ORCID
  11. Russell Blackport: Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada. ORCID
  12. Joonsuk M Kang: The University of Chicago, Chicago, IL, USA.
  13. Stephen Po-Chedley: Lawrence Livermore National Laboratory, Livermore, CA, USA. ORCID

Abstract

Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations. This review covers the state of the science on the ability of models to represent historical trends in the climate system. It also outlines robust procedures that should be used when comparing modeled and observed trends and how to move beyond quantification into understanding. Finally, this review discusses cutting-edge methods for identifying sources of discrepancies and the importance of future confrontations.

References

  1. Nat Commun. 2022 Mar 3;13(1):1148 [PMID: 35241666]
  2. Sci Rep. 2017 Dec 21;7(1):17966 [PMID: 29269737]
  3. Curr Clim Change Rep. 2019;5(4):372-389 [PMID: 31929963]
  4. Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2209431119 [PMID: 36399545]
  5. Nat Commun. 2024 May 10;15(1):3948 [PMID: 38729963]
  6. Nature. 2013 Sep 19;501(7467):403-7 [PMID: 23995690]
  7. Curr Clim Change Rep. 2015;1(2):49-59 [PMID: 26312211]
  8. Sci Adv. 2022 Nov 11;8(45):eabn3112 [PMID: 36367934]
  9. Nature. 2014 Jan 2;505(7481):37-42 [PMID: 24380952]
  10. Sci Rep. 2017 May 24;7(1):2336 [PMID: 28539644]
  11. Nat Commun. 2020 Jul 3;11(1):3295 [PMID: 32620769]
  12. Science. 2020 Sep 25;369(6511):1621-1625 [PMID: 32973027]
  13. Nat Commun. 2017 Jul 24;8(1):107 [PMID: 28740082]
  14. Nature. 2020 Mar;579(7800):544-548 [PMID: 32214266]
  15. AGU Adv. 2024 Dec;5(6):e2024AV001318 [PMID: 39606593]
  16. Sci Data. 2020 Apr 3;7(1):109 [PMID: 32246091]
  17. Nature. 2024 Aug;632(8027):1060-1066 [PMID: 39039241]
  18. Sci Adv. 2022 Jul 29;8(30):eabo2405 [PMID: 35895816]
  19. Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2123512119 [PMID: 36469772]
  20. Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2406143121 [PMID: 39374381]
  21. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2300758120 [PMID: 37155871]
  22. Nature. 2018 Aug;560(7718):360-364 [PMID: 30111788]
  23. Nature. 2017 May 3;545(7652):41-47 [PMID: 28470193]
  24. Science. 2024 Jul 26;385(6707):427-432 [PMID: 39052805]
  25. Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2300881120 [PMID: 37459536]
  26. Sci Adv. 2024 Mar 29;10(13):eadk4489 [PMID: 38552014]
  27. Nature. 2024 Jun;630(8016):315-324 [PMID: 38867130]
  28. Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2312093121 [PMID: 38466843]
  29. Nat Commun. 2024 Aug 28;15(1):7453 [PMID: 39198427]
  30. Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2200514119 [PMID: 35969773]
  31. Sci Adv. 2024 Oct 4;10(40):eadp1346 [PMID: 39356772]
  32. Nature. 2023 Dec;624(7990):33-35 [PMID: 38036862]
  33. Nat Commun. 2021 Jul 28;12(1):4577 [PMID: 34321469]
  34. Nature. 2008 May 29;453(7195):646-9 [PMID: 18509442]
  35. Sci Data. 2024 Aug 30;11(1):953 [PMID: 39214994]
  36. Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2302480120 [PMID: 38147646]
  37. J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454 [PMID: 32020988]
  38. Nature. 2023 May;617(7961):529-532 [PMID: 37069264]
  39. Nature. 2011 Feb 17;470(7334):378-81 [PMID: 21331039]
  40. Nature. 2015 Sep 3;525(7567):47-55 [PMID: 26333465]
  41. Nat Commun. 2023 Oct 26;14(1):6803 [PMID: 37884524]
  42. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17235-40 [PMID: 24043789]
  43. Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9684-9689 [PMID: 30190437]

Word Cloud

Created with Highcharts 10.0.0trendsclimatesignalsobservationsforcedchangegrowingEarthSystemsciencehistoricalmodelsreviewAnthropogenicallyemergingnoiseinternalvariabilityimpactssocietydecadesClimateModelspredictingwillunfoldchallengesremaingivenlengtheningobservationalrecordcommunitynowpositionconfrontrepresentedcoversstateabilityrepresentsystemalsooutlinesrobustproceduresusedcomparingmodeledobservedmovebeyondquantificationunderstandingFinallydiscussescutting-edgemethodsidentifyingsourcesdiscrepanciesimportancefutureconfrontationsConfrontingModel

Similar Articles

Cited By

No available data.