The Frequency of a Magnetic Field Determines the Behavior of Tumor and Non-Tumor Nerve Cell Models.

Isabel L��pez de Mingo, Marco-Xavier Rivera Gonz��lez, Milagros Ramos G��mez, Ceferino Maest�� Unturbe
Author Information
  1. Isabel L��pez de Mingo: Escuela T��cnica Superior de Ingenieros de Telecomunicaci��n (ETSIT), Universidad Polit��cnica de Madrid, 28040 Madrid, Spain. ORCID
  2. Marco-Xavier Rivera Gonz��lez: Centro de Tecnolog��a Biom��dica (CTB), Universidad Polit��cnica de Madrid, 28223 Madrid, Spain. ORCID
  3. Milagros Ramos G��mez: Escuela T��cnica Superior de Ingenieros de Telecomunicaci��n (ETSIT), Universidad Polit��cnica de Madrid, 28040 Madrid, Spain. ORCID
  4. Ceferino Maest�� Unturbe: Escuela T��cnica Superior de Ingenieros de Telecomunicaci��n (ETSIT), Universidad Polit��cnica de Madrid, 28040 Madrid, Spain. ORCID

Abstract

The involvement of magnetic fields in basic cellular processes has been studied for years. Most studies focus their results on a single frequency and intensity. Intensity has long been the central parameter in hypotheses of interaction between cells and magnetic fields; however, frequency has always played a secondary role. The main objective of this study was to obtain a specific frequency that allows a reduction in the viability and proliferation of glioblastoma (CT2A) and neuroblastoma (N2A) cell models. These were compared with an astrocyte cell model (C8D1A) (nontumor) to determine whether there is a specific frequency of response for each of the cell lines used. The CT2A, C8D1A, and N2A cell lines were exposed to a magnetic field of 100 ��T and a variable frequency range between 20 and 100 Hz for 24, 48 and 72 h. The results fit a biological window model in which the viability and proliferation of N2A and CT2A cells decrease statistically significantly in a 50 Hz center of value window. In addition, the non-tumor cell model showed different behavior from tumor cell models depending on the applied frequency. These results are promising in the use of magnetic fields for therapeutic purposes.

Keywords

References

  1. J Cell Biochem. 2004 Sep 1;93(1):83-92 [PMID: 15352165]
  2. Int J Mol Sci. 2024 May 07;25(10): [PMID: 38791113]
  3. Cancer Med. 2016 Nov;5(11):3128-3139 [PMID: 27748048]
  4. Acta Neuropathol. 2010 Jan;119(1):7-35 [PMID: 20012068]
  5. Prog Histochem Cytochem. 2009;43(4):177-264 [PMID: 19167986]
  6. Int J Mol Sci. 2021 Mar 31;22(7): [PMID: 33807400]
  7. Int J Biochem Cell Biol. 2007;39(11):2093-106 [PMID: 17662640]
  8. Brain Struct Funct. 2017 Jul;222(5):2017-2029 [PMID: 28280934]
  9. FASEB J. 1998 Apr;12(6):395-420 [PMID: 9535213]
  10. Bioelectromagnetics. 1994;15(3):239-60 [PMID: 8074739]
  11. Radiat Res. 2015 Mar;183(3):305-14 [PMID: 25688995]
  12. PLoS One. 2014 Nov 19;9(11):e113424 [PMID: 25409520]
  13. Mol Biol Rep. 2023 Feb;50(2):1005-1017 [PMID: 36378418]
  14. Bioelectromagnetics. 1991;12(2):71-5 [PMID: 2039557]
  15. Br J Dermatol. 2008 Jun;158(6):1189-96 [PMID: 18410412]
  16. Radiat Environ Biophys. 2002 Jun;41(2):131-7 [PMID: 12201056]
  17. Brain Sci. 2021 Jan 31;11(2): [PMID: 33572550]
  18. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E302-E309 [PMID: 29279367]
  19. J Cell Biochem. 1993 Apr;51(4):410-6 [PMID: 8388394]
  20. Int J Mol Sci. 2021 Jan 29;22(3): [PMID: 33572811]
  21. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1999-2003 [PMID: 1064869]
  22. Bioelectromagnetics. 1989;10(2):129-45 [PMID: 2712845]
  23. Bioelectromagnetics. 1985;6(1):1-11 [PMID: 3977964]
  24. Int J Mol Sci. 2023 Jul 05;24(13): [PMID: 37446295]
  25. Nat Rev Neurol. 2023 Jul;19(7):395-409 [PMID: 37308616]
  26. Biotechnol Appl Biochem. 2017 May;64(3):415-422 [PMID: 27001710]
  27. Histochem Cell Biol. 2022 Oct;158(4):369-381 [PMID: 35751679]
  28. Drug Chem Toxicol. 2014 Oct;37(4):440-7 [PMID: 24479558]
  29. Nat Med. 2020 Jan;26(1):131-142 [PMID: 31932797]
  30. Int J Mol Sci. 2017 Oct 11;18(10): [PMID: 29019940]
  31. PLoS One. 2015 Oct 02;10(10):e0139644 [PMID: 26431550]
  32. Glia. 2013 Dec;61(12):1939-58 [PMID: 24123158]
  33. PLoS One. 2014 Aug 11;9(8):e104732 [PMID: 25111195]
  34. Nature. 2020 Feb;578(7796):593-599 [PMID: 32051591]
  35. Nat Commun. 2020 Feb 27;11(1):1105 [PMID: 32107381]
  36. Nat Rev Neurosci. 2005 Aug;6(8):626-40 [PMID: 16025096]
  37. Biophys J. 1992 Dec;63(6):1632-42 [PMID: 19431866]
  38. Ann N Y Acad Sci. 1975 Feb 28;247:117-24 [PMID: 1054223]
  39. Cancers (Basel). 2022 Jan 17;14(2): [PMID: 35053605]
  40. Bioelectromagnetics. 1987;8(3):215-27 [PMID: 3663247]
  41. Semin Immunopathol. 2015 Nov;37(6):625-38 [PMID: 26223505]
  42. Adv Exp Med Biol. 2020;1237:135-149 [PMID: 31376139]
  43. Int J Radiat Biol. 2015;91(12):964-72 [PMID: 26762464]
  44. Aging (Albany NY). 2020 Feb 18;12(4):3662-3681 [PMID: 32074079]
  45. Nature. 2019 Jun;570(7761):332-337 [PMID: 31042697]
  46. Neurochem Res. 1988 Jul;13(7):671-7 [PMID: 3045687]
  47. PLoS One. 2018 Jul 16;13(7):e0199753 [PMID: 30011321]
  48. Prog Neurobiol. 1994 Dec;44(6):517-601 [PMID: 7701072]
  49. Toxicol Sci. 2016 Feb;149(2):433-40 [PMID: 26572663]
  50. Front Pharmacol. 2019 Sep 27;10:1114 [PMID: 31611796]
  51. Prog Biophys Mol Biol. 2023 May;179:38-50 [PMID: 37019340]
  52. Int J Environ Res Public Health. 2019 Jun 13;16(12): [PMID: 31200435]
  53. Biomedicines. 2021 Aug 19;9(8): [PMID: 34440255]
  54. ScientificWorldJournal. 2004 Oct 20;4 Suppl 2:4-22 [PMID: 15517098]
  55. Rev Environ Health. 2023 Apr 07;39(3):519-529 [PMID: 37021652]
  56. Cells. 2021 Jul 20;10(7): [PMID: 34360009]
  57. Acta Odontol Scand. 2020 Oct;78(7):494-500 [PMID: 32191156]
  58. Neuroimmunol Neuroinflamm. 2015 Apr-Jun;2(2):115-117 [PMID: 25938129]
  59. PLoS One. 2014 Mar 03;9(3):e90041 [PMID: 24595264]
  60. Nat Rev Neurosci. 2006 Jan;7(1):41-53 [PMID: 16371949]
  61. PLoS One. 2014 Aug 15;9(8):e104973 [PMID: 25127118]
  62. Acta Biol Hung. 2010 Jun;61(2):158-67 [PMID: 20519170]
  63. Nat Med. 2014 Oct;20(10):1147-56 [PMID: 25216636]
  64. Mutat Res. 1998 Apr;410(2):185-220 [PMID: 9637236]
  65. Front Oncol. 2022 Jul 22;12:857068 [PMID: 35936711]
  66. Genes Dev. 2007 Nov 1;21(21):2683-710 [PMID: 17974913]
  67. Bioelectromagnetics. 1999 Oct;20(7):423-30 [PMID: 10495307]
  68. Rev Environ Health. 1994 Jul-Dec;10(3-4):155-69 [PMID: 7724875]
  69. Ecotoxicol Environ Saf. 2023 Mar 15;253:114650 [PMID: 36805133]
  70. Glia. 2019 May;67(5):779-790 [PMID: 30240060]
  71. Cancer Biother Radiopharm. 2021 Sep;36(7):579-587 [PMID: 32644826]
  72. Bioelectromagnetics. 1992;13(3):231-5 [PMID: 1590822]
  73. Med Hypotheses. 1991 Jul;35(3):265-74 [PMID: 1943872]
  74. Rev Environ Health. 1994 Apr-Jun;10(2):75-83 [PMID: 8047673]
  75. Bioelectromagnetics. 1995;16(6):396-401 discussion 402-6 [PMID: 8789071]
  76. Int J Radiat Biol. 2019 Mar;95(3):368-377 [PMID: 30513241]
  77. Biomed Res Int. 2017;2017:2460215 [PMID: 28607928]
  78. Theriogenology. 2021 Oct 1;173:112-122 [PMID: 34371438]
  79. Nat Neurosci. 2014 May;17(5):694-703 [PMID: 24686787]
  80. Neuron. 2020 Nov 25;108(4):608-622 [PMID: 32898475]
  81. Physiol Rev. 1981 Apr;61(2):435-514 [PMID: 7012860]
  82. Sci Rep. 2023 Jul 5;13(1):10845 [PMID: 37407632]
  83. Nature. 2021 Feb;590(7846):473-479 [PMID: 33408417]
  84. Neurotherapeutics. 2010 Oct;7(4):338-53 [PMID: 20880499]
  85. Neurochem Int. 2013 Mar;62(4):418-24 [PMID: 23411410]
  86. Expert Rev Mol Diagn. 2012 May;12(4):383-94 [PMID: 22616703]
  87. Environ Health Perspect. 1995 Mar;103 Suppl 2:63-7 [PMID: 7614950]
  88. Sci Transl Med. 2019 Oct 16;11(514): [PMID: 31619545]
  89. Trends Neurosci. 2017 Jun;40(6):358-370 [PMID: 28527591]
  90. Int J Mol Sci. 2022 Jul 19;23(14): [PMID: 35887313]
  91. Cell Prolif. 2021 Dec;54(12):e13154 [PMID: 34741480]
  92. Bioelectrochemistry. 2022 Oct;147:108196 [PMID: 35820262]
  93. Cold Spring Harb Perspect Med. 2019 Jan 2;9(1): [PMID: 29358321]
  94. Nature. 2018 May;557(7707):724-728 [PMID: 29769726]
  95. Int J Mol Sci. 2022 Jan 25;23(3): [PMID: 35163262]
  96. Sci Rep. 2022 Aug 20;12(1):14225 [PMID: 35987807]
  97. Int J Mol Sci. 2020 Apr 22;21(8): [PMID: 32331350]
  98. Biomed Pharmacother. 2016 Aug;82:628-39 [PMID: 27470406]
  99. Bioelectromagnetics. 1993;Suppl 2:1-73 [PMID: 8357346]
  100. Brain Res. 1973 Dec 7;63:331-42 [PMID: 4357971]
  101. Bioelectromagnetics. 1991;12(2):77-83 [PMID: 2039558]
  102. Stem Cell Res Ther. 2023 May 16;14(1):133 [PMID: 37194107]
  103. Annu Rev Cell Dev Biol. 2014;30:465-502 [PMID: 25000993]
  104. Nat Med. 2018 Jul;24(7):931-938 [PMID: 29892066]
  105. Bioelectromagnetics. 1990;11(3):251-5 [PMID: 2268380]
  106. Cell J. 2022 Jul 27;24(7):364-369 [PMID: 36043404]
  107. Bioelectromagnetics. 1996;17(5):339-57 [PMID: 8915543]
  108. Bioelectromagnetics. 1999;20(1):5-12 [PMID: 9915588]
  109. Biomed Res Int. 2014;2014:567183 [PMID: 25025060]
  110. Environ Res. 2018 May;163:71-79 [PMID: 29427953]
  111. Free Radic Biol Med. 2022 Feb 20;180:153-164 [PMID: 35063649]
  112. Front Bioeng Biotechnol. 2024 Mar 08;12:1337899 [PMID: 38524191]
  113. Nat Rev Drug Discov. 2022 May;21(5):339-358 [PMID: 35173313]
  114. Brain. 2016 Jul;139(Pt 7):1939-57 [PMID: 27246324]
  115. Electromagn Biol Med. 2021 Jul 3;40(3):384-392 [PMID: 33632057]
  116. J Chem Neuroanat. 2020 Nov;109:101857 [PMID: 32918997]
  117. Bioelectromagnetics. 1988;9(1):39-51 [PMID: 2449894]
  118. Int J Mol Sci. 2019 Dec 24;21(1): [PMID: 31878361]
  119. Int J Radiat Biol. 2017 Feb;93(2):240-248 [PMID: 27646005]
  120. Stem Cell Res Ther. 2016 Apr 18;7(1):54 [PMID: 27086866]
  121. Autophagy. 2024 Sep;20(9):2000-2016 [PMID: 38762757]
  122. Int J Mol Sci. 2023 May 08;24(9): [PMID: 37176144]
  123. Electromagn Biol Med. 2018;37(1):35-42 [PMID: 29513614]
  124. Cardiology. 2010;117(1):54-6 [PMID: 20924178]
  125. Glia. 2015 Aug;63(8):1320-9 [PMID: 25963996]
  126. Bioelectromagnetics. 1994;15(3):217-38 [PMID: 8074738]
  127. Trends Immunol. 2020 Sep;41(9):805-819 [PMID: 32800705]
  128. Science. 2021 Apr 23;372(6540): [PMID: 33888612]
  129. Nat Commun. 2019 Jun 11;10(1):2541 [PMID: 31186414]
  130. Trends Neurosci. 2017 Jul;40(7):422-437 [PMID: 28578789]
  131. Nat Neurosci. 2020 Jun;23(6):701-706 [PMID: 32341542]
  132. Bioelectromagnetics. 2022 May;43(4):225-244 [PMID: 35437793]
  133. Cold Spring Harb Perspect Biol. 2013 Mar 01;5(3):a008904 [PMID: 23457258]

Grants

  1. P240060247/Fundaci��n Humanismo y Ciencia

MeSH Term

Magnetic Fields
Cell Line, Tumor
Cell Proliferation
Cell Survival
Humans
Glioblastoma
Animals
Astrocytes
Neuroblastoma
Mice
Neurons

Word Cloud

Created with Highcharts 10.0.0frequencycellmagneticfieldsresultsviabilityproliferationCT2AN2AmodelwindowcellsspecificglioblastomaneuroblastomamodelsC8D1Alinesfield100HzbiologicalinvolvementbasiccellularprocessesstudiedyearsstudiesfocussingleintensityIntensitylongcentralparameterhypothesesinteractionhoweveralwaysplayedsecondaryrolemainobjectivestudyobtainallowsreductioncomparedastrocytenontumordeterminewhetherresponseusedexposed��Tvariablerange20244872hfitdecreasestatisticallysignificantly50centervalueadditionnon-tumorshoweddifferentbehaviortumordependingappliedpromisingusetherapeuticpurposesFrequencyMagneticFieldDeterminesBehaviorTumorNon-TumorNerveCellModelsastrocytes

Similar Articles

Cited By