Characterizing the Ovarian Cytogenetic Dynamics of Sichuan Bream () During Vitellogenesis at a Single-Cell Resolution.

Zhe Zhao, Shixia Huang, Qilin Feng, Li Peng, Qiang Zhao, Zhijian Wang
Author Information
  1. Zhe Zhao: Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China. ORCID
  2. Shixia Huang: Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China.
  3. Qilin Feng: Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China.
  4. Li Peng: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
  5. Qiang Zhao: Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China.
  6. Zhijian Wang: Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China.

Abstract

Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing (snRNA-seq) on the ovaries of Sichuan bream (). We first identified six distinct cell types (germ cells, follicular cells, immune cells, stromal cells, endothelial cells, and epithelial cells) in the ovaries based on typical functional marker genes. Subsequently, we reconstructed the developmental trajectory of germ cells using pseudotime analysis, which describes the transcriptional dynamics of germ cells at various developmental stages. Additionally, we identified transcription factors (TFs) specific to germ cells that exhibit high activity at each developmental stage. Furthermore, we analyzed the genetic functional heterogeneity of germ cells and follicular cells at different developmental stages to elucidate their contributions to vitellogenesis. Finally, cell interaction analysis revealed that germ cells communicate with somatic cells or with each other via multiple receptors and ligands to regulate growth, development, and yolk acquisition. These findings enhance our understanding of the physiological mechanisms underlying vitellogenesis in fish, providing a theoretical foundation for regulating ovarian development in farmed fish.

Keywords

References

  1. Gen Comp Endocrinol. 2012 Sep 1;178(2):355-62 [PMID: 22732078]
  2. Gen Comp Endocrinol. 2019 Jun 1;277:122-129 [PMID: 30951723]
  3. Mol Hum Reprod. 2021 May 29;27(6): [PMID: 33881516]
  4. Theriogenology. 2024 Jan 15;214:206-214 [PMID: 37907035]
  5. Sci China Life Sci. 2024 Jan;67(1):51-66 [PMID: 37721638]
  6. Animals (Basel). 2023 Sep 26;13(19): [PMID: 37835625]
  7. J Clin Endocrinol Metab. 2020 Nov 1;105(11): [PMID: 32770239]
  8. Cell Discov. 2020 Dec 29;6(1):97 [PMID: 33372178]
  9. Mol Cell Endocrinol. 2008 Sep 10;291(1-2):95-103 [PMID: 18423979]
  10. J Biol Chem. 2006 Mar 10;281(10):6404-12 [PMID: 16407318]
  11. PeerJ. 2016 Feb 29;4:e1694 [PMID: 26966653]
  12. Mol Cell. 2018 Dec 20;72(6):1021-1034.e4 [PMID: 30472193]
  13. Fly (Austin). 2012 Jul-Sep;6(3):173-83 [PMID: 22722696]
  14. Sci Rep. 2017 Jul 20;7(1):6031 [PMID: 28729663]
  15. Adv Protein Chem Struct Biol. 2019;116:135-170 [PMID: 31036290]
  16. Front Cell Dev Biol. 2021 Mar 29;9:647892 [PMID: 33855024]
  17. PLoS Genet. 2016 Sep 19;12(9):e1006323 [PMID: 27642754]
  18. Reproduction. 2021 Apr;161(4):437-448 [PMID: 33720037]
  19. Hum Reprod Update. 2020 Jan 1;26(1):43-57 [PMID: 31822904]
  20. J Pathol. 2008 May;215(1):21-30 [PMID: 18348160]
  21. Biology (Basel). 2021 Nov 20;10(11): [PMID: 34827207]
  22. Gen Comp Endocrinol. 2017 Jul 1;248:106-113 [PMID: 28238709]
  23. Nat Rev Genet. 2016 Oct;17(10):585-600 [PMID: 27573372]
  24. Can J Physiol Pharmacol. 2010 Apr;88(4):399-413 [PMID: 20555408]
  25. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2474-9 [PMID: 16461896]
  26. Nature. 1990 Mar 29;344(6265):435-9 [PMID: 1690859]
  27. Cell Cycle. 2015;14(17):2853-61 [PMID: 26125600]
  28. Biol Reprod. 2019 Sep 1;101(3):617-634 [PMID: 31077285]
  29. Front Biosci (Landmark Ed). 2019 Mar 1;24(5):983-993 [PMID: 30844725]
  30. J Fish Biol. 2024 Dec;105(6):1800-1810 [PMID: 39235098]
  31. Int J Mol Sci. 2021 Jan 15;22(2): [PMID: 33467661]
  32. Science. 2006 Apr 28;312(5773):596-600 [PMID: 16574820]
  33. Endocr Rev. 2011 Feb;32(1):81-151 [PMID: 21051590]
  34. FEBS Lett. 2013 Jun 5;587(11):1644-9 [PMID: 23603388]
  35. Nat Commun. 2020 Mar 2;11(1):1147 [PMID: 32123174]
  36. Mol Cell. 2018 Oct 4;72(1):112-126.e5 [PMID: 30217558]
  37. Science. 2002 Jun 21;296(5576):2178-80 [PMID: 12077402]
  38. Genes (Basel). 2021 Dec 29;13(1): [PMID: 35052423]
  39. DNA Cell Biol. 2019 Jun;38(6):549-560 [PMID: 31120353]
  40. PLoS One. 2014 Dec 08;9(12):e114176 [PMID: 25485989]
  41. Development. 1997 Aug;124(16):3157-65 [PMID: 9272956]
  42. Int J Biol Macromol. 2024 Feb;259(Pt 2):129149 [PMID: 38176486]
  43. Endocrinology. 2018 Sep 1;159(9):3403-3420 [PMID: 30099545]
  44. Gen Comp Endocrinol. 2010 Feb 1;165(3):367-89 [PMID: 19505465]
  45. Cell Rep. 2024 May 28;43(5):114205 [PMID: 38753485]
  46. Biol Reprod. 2007 Feb;76(2):294-302 [PMID: 17093199]
  47. Nat Commun. 2022 May 6;13(1):2514 [PMID: 35523900]
  48. J Mol Cell Biol. 2020 Apr 24;12(3):230-244 [PMID: 31282930]
  49. Elife. 2022 May 19;11: [PMID: 35588359]
  50. Dev Growth Differ. 2008 Jun;50 Suppl 1:S195-219 [PMID: 18482399]
  51. Mol Reprod Dev. 1998 Mar;49(3):277-85 [PMID: 9491380]
  52. J Biol Chem. 2016 Mar 18;291(12):6146-57 [PMID: 26792861]
  53. Am J Pathol. 2007 Aug;171(2):386-95 [PMID: 17600130]
  54. Biol Reprod. 2004 May;70(5):1493-9 [PMID: 14736813]
  55. J Biol Chem. 2015 Feb 13;290(7):4075-85 [PMID: 25548279]
  56. PLoS Biol. 2020 Dec 22;18(12):e3001025 [PMID: 33351795]
  57. Cell. 2020 Feb 6;180(3):585-600.e19 [PMID: 32004457]
  58. Eur J Obstet Gynecol Reprod Biol. 2005 Jul 1;121(1):71-6 [PMID: 15989986]
  59. Nat Commun. 2019 Jul 18;10(1):3164 [PMID: 31320652]
  60. Biomolecules. 2022 Dec 27;13(1): [PMID: 36671432]
  61. Int J Mol Sci. 2024 Jun 19;25(12): [PMID: 38928442]
  62. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20015-20026 [PMID: 32759216]
  63. Ecotoxicol Environ Saf. 2022 Oct 15;245:114093 [PMID: 36116238]
  64. Development. 2008 Jan;135(1):111-21 [PMID: 18045843]
  65. Annu Rev Physiol. 2017 Feb 10;79:237-260 [PMID: 27860834]
  66. Front Endocrinol (Lausanne). 2023 Jul 28;14:1124143 [PMID: 37576970]
  67. Cell Stem Cell. 2017 Jun 1;20(6):858-873.e4 [PMID: 28457750]
  68. Front Cell Dev Biol. 2022 Mar 01;10:828124 [PMID: 35300429]
  69. FASEB J. 2023 Jan;37(1):e22718 [PMID: 36527406]
  70. Biol Reprod. 2016 Jan;94(1):16 [PMID: 26586844]
  71. Cell. 1990 Feb 9;60(3):461-72 [PMID: 1967980]
  72. Curr Issues Mol Biol. 2024 Mar 11;46(3):2301-2319 [PMID: 38534763]
  73. Nat Biotechnol. 2020 Jun;38(6):737-746 [PMID: 32341560]
  74. Ann N Y Acad Sci. 2009 Sep;1173 Suppl 1:E2-9 [PMID: 19751410]
  75. Sci Rep. 2018 Sep 13;8(1):13760 [PMID: 30213994]
  76. Mol Cell Endocrinol. 2009 Nov 27;312(1-2):42-52 [PMID: 19406202]
  77. J Electron Microsc Tech. 1990 Nov;16(3):175-201 [PMID: 2243277]
  78. PLoS One. 2013 Sep 10;8(9):e73951 [PMID: 24040125]
  79. Gen Comp Endocrinol. 2015 Sep 15;221:9-15 [PMID: 25660470]
  80. Development. 2021 Apr 1;148(7): [PMID: 33722898]
  81. FASEB J. 2020 Feb;34(2):2812-2820 [PMID: 31908056]
  82. Blood. 2001 Nov 15;98(10):3087-96 [PMID: 11698295]
  83. Dev Cell. 2020 Feb 24;52(4):429-445.e10 [PMID: 32032549]
  84. Gen Comp Endocrinol. 2010 Feb 1;165(3):352-66 [PMID: 19289125]
  85. J Biol Chem. 2020 Apr 3;295(14):4617-4630 [PMID: 32115405]
  86. Reprod Sci. 2024 Apr;31(4):906-916 [PMID: 37917297]
  87. Mol Hum Reprod. 2009 Mar;15(3):139-47 [PMID: 19179408]
  88. Curr Top Dev Biol. 1995;30:103-45 [PMID: 7555044]
  89. Biochem Biophys Res Commun. 2012 Aug 24;425(2):273-7 [PMID: 22842574]
  90. Prog Nucleic Acid Res Mol Biol. 2008;82:101-45 [PMID: 18929140]
  91. FASEB J. 2019 Sep;33(9):10049-10064 [PMID: 31199671]
  92. Nature. 2014 Aug 21;512(7514):319-23 [PMID: 25119047]
  93. Pestic Biochem Physiol. 2023 Dec;197:105706 [PMID: 38072559]
  94. Endocrinology. 2006 May;147(5):2399-410 [PMID: 16439447]

Grants

  1. 2023TIAD-KPX0067/Chongqing Technology Innovation and Application Development

MeSH Term

Animals
Vitellogenesis
Female
Ovary
Single-Cell Analysis
Oocytes
Transcription Factors
Oogenesis
Germ Cells
Fish Proteins
Cyprinidae

Chemicals

Transcription Factors
Fish Proteins

Word Cloud

Created with Highcharts 10.0.0cellsgermvitellogenesisdevelopmentalfishdevelopmentVitellogenesisphysiologicalmechanismssingle-nucleusRNAsequencingovariesSichuanidentifiedcellfollicularfunctionalanalysisstagesrepresentscriticalphaseoogenesissignificantlyinfluencingnutritionalprovisioningoocytematurationsubsequentoffspringHoweverresearchgoverningsingle-celllevelremainslimitedstudyperformedsnRNA-seqbreamfirstsixdistincttypesimmunestromalendothelialepithelialbasedtypicalmarkergenesSubsequentlyreconstructedtrajectoryusingpseudotimedescribestranscriptionaldynamicsvariousAdditionallytranscriptionfactorsTFsspecificexhibithighactivitystageFurthermoreanalyzedgeneticheterogeneitydifferentelucidatecontributionsFinallyinteractionrevealedcommunicatesomaticviamultiplereceptorsligandsregulategrowthyolkacquisitionfindingsenhanceunderstandingunderlyingprovidingtheoreticalfoundationregulatingovarianfarmedCharacterizingOvarianCytogeneticDynamicsBreamSingle-CellResolutionSinibramataeniatusovary

Similar Articles

Cited By