Brain Disease-Modifying Effects of Radiofrequency as a Non-Contact Neuronal Stimulation Technology.

Shulei Sun, Junsoo Bok, Yongwoo Jang, Hyemyung Seo
Author Information
  1. Shulei Sun: Department of Molecular and Life Sciences, Institute for Precision Therapeutics, Center for Bionano Intelligence Education and Research, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea.
  2. Junsoo Bok: Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea.
  3. Yongwoo Jang: Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea. ORCID
  4. Hyemyung Seo: Department of Molecular and Life Sciences, Institute for Precision Therapeutics, Center for Bionano Intelligence Education and Research, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea.

Abstract

Non-invasive, non-contact, and painless methods of electrical stimulation to enhance neural function have been widely studied in recent years, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD) and related dementias, which cause cognitive decline and other neurological symptoms. Radiofrequency (RF), which is a rate of oscillation in the range of 3 kHz to 300 GHz (3 THz), has been suggested as one potential non-contact neuronal stimulation (NCNS) technique for improving brain function. A new type of electrical stimulation uses a radiofrequency electromagnetic field (RF-EMF). RF exposure has been shown to modulate neural stimulation and influence various brain activities in in vitro and in vivo models. Recent studies have explored the effects of RF-EMF on human physiology, particularly in areas such as brain activity, cognition, and sleep behavior. In this review, we summarize recent findings about the effects of non-contact stimulations in in vitro studies, in vivo animal models, and human clinical cases.

Keywords

References

  1. J Sleep Res. 2002 Dec;11(4):289-95 [PMID: 12464096]
  2. Bioelectromagnetics. 2013 Oct;34(7):530-41 [PMID: 23787775]
  3. Curr Alzheimer Res. 2015;12(5):481-92 [PMID: 26017559]
  4. Brain Stimul. 2013 Sep;6(5):805-11 [PMID: 23482083]
  5. Sci Rep. 2022 Mar 3;12(1):3506 [PMID: 35241689]
  6. J Sleep Res. 2019 Aug;28(4):e12813 [PMID: 30648318]
  7. Int J Radiat Biol. 2015 Apr;91(4):306-11 [PMID: 25529971]
  8. Neuroreport. 2007 May 28;18(8):803-7 [PMID: 17471070]
  9. Bioelectromagnetics. 2003 May;24(4):262-76 [PMID: 12696086]
  10. Ann N Y Acad Sci. 2021 Sep;1499(1):82-103 [PMID: 33945157]
  11. Neuroreport. 2000 Oct 20;11(15):3321-5 [PMID: 11059895]
  12. Arch Med Res. 2013 Apr;44(3):178-84 [PMID: 23523687]
  13. Cell Biosci. 2023 Jul 28;13(1):138 [PMID: 37507776]
  14. Aging Cell. 2022 Mar;21(3):e13573 [PMID: 35199454]
  15. Curr Opin Neurol. 2019 Apr;32(2):292-304 [PMID: 30720478]
  16. Environ Res. 2018 Nov;167:694-699 [PMID: 29884550]
  17. Sci Rep. 2021 Jan 12;11(1):621 [PMID: 33436686]
  18. Nature. 2024 Mar;627(8002):149-156 [PMID: 38418876]
  19. Brain Res. 2016 Jul 1;1642:10-19 [PMID: 26972535]
  20. Neurosci Lett. 2007 Jan 22;412(1):34-8 [PMID: 17187929]
  21. Neuron. 2019 Jun 5;102(5):901-902 [PMID: 31170394]
  22. Toxicol In Vitro. 2020 Oct;68:104963 [PMID: 32777439]
  23. J Sleep Res. 2012 Dec;21(6):620-9 [PMID: 22724534]
  24. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20673-8 [PMID: 23169668]
  25. Pathophysiology. 2019 Sep - Dec;26(3-4):203-212 [PMID: 30850244]
  26. Int J Mol Sci. 2018 Jul 19;19(7): [PMID: 30029554]
  27. J Alzheimers Dis. 2010;19(1):191-210 [PMID: 20061638]
  28. Ann Neurol. 2006 Aug;60(2):188-96 [PMID: 16802289]
  29. Environ Health Perspect. 2006 Aug;114(8):1270-5 [PMID: 16882538]
  30. Neurosci Lett. 2009 May 22;455(3):173-7 [PMID: 19429115]
  31. Environ Sci Pollut Res Int. 2016 Dec;23(24):25343-25355 [PMID: 27696165]
  32. Bioelectromagnetics. 2005 Jul;26(5):341-50 [PMID: 15887252]
  33. J Radiat Res. 2016 Nov;57(6):620-626 [PMID: 27325640]
  34. J Sleep Res. 2007 Sep;16(3):253-8 [PMID: 17716273]
  35. Int J Environ Res Public Health. 2023 Sep 21;20(18): [PMID: 37754652]
  36. JAMA. 2011 Feb 23;305(8):808-13 [PMID: 21343580]
  37. PLoS One. 2014 Aug 15;9(8):e104973 [PMID: 25127118]
  38. Neuroreport. 2005 Nov 28;16(17):1973-6 [PMID: 16272890]
  39. Korean J Physiol Pharmacol. 2018 May;22(3):277-289 [PMID: 29719450]
  40. Sci Rep. 2014 May 29;4:5103 [PMID: 24869783]
  41. Int J Neurosci. 2003 Jul;113(7):1007-19 [PMID: 12881192]
  42. Sci Rep. 2017 Jan 20;7:41129 [PMID: 28106136]
  43. Exp Neurol. 2019 Sep;319:112963 [PMID: 31125549]
  44. Int J Mol Sci. 2022 Dec 30;24(1): [PMID: 36614120]
  45. Nat Neurosci. 2023 Apr;26(4):570-578 [PMID: 36879142]
  46. Neurosci Lett. 1999 Nov 19;275(3):207-10 [PMID: 10580711]
  47. Bioelectromagnetics. 2009 Oct;30(7):564-72 [PMID: 19479910]
  48. Electromagn Biol Med. 2011 Dec;30(4):219-34 [PMID: 22047460]
  49. J Exp Biol. 2020 Feb 28;223(Pt 5): [PMID: 32041804]
  50. Toxicol In Vitro. 2019 Dec;61:104609 [PMID: 31351122]
  51. Inflamm Regen. 2022 Oct 3;42(1):31 [PMID: 36184623]
  52. Toxicol Rep. 2017 Oct 03;4:530-534 [PMID: 29657919]
  53. J Sleep Res. 2021 Aug;30(4):e13224 [PMID: 33166026]
  54. Australas Phys Eng Sci Med. 2003 Dec;26(4):162-7 [PMID: 14995060]
  55. Neuroscience. 2019 Jun 1;408:46-57 [PMID: 30953670]
  56. Neural Regen Res. 2023 Nov;18(11):2497-2503 [PMID: 37282482]
  57. Neurosci Lett. 2018 Feb 14;666:64-69 [PMID: 29273398]
  58. Brain Res. 2010 Jan 22;1311:189-96 [PMID: 19879861]
  59. PLoS One. 2012;7(4):e35751 [PMID: 22558216]
  60. J Neuroinflammation. 2010 Sep 09;7:54 [PMID: 20828402]
  61. Int J Radiat Biol. 2017 Feb;93(2):249-256 [PMID: 27648632]
  62. Neuroscience. 2011 Jun 30;185:135-49 [PMID: 21514369]
  63. Int J Cancer. 1986 Mar 15;37(3):459-64 [PMID: 2868998]
  64. Bioelectromagnetics. 2012 Jan;33(1):86-93 [PMID: 21812009]
  65. Sci Rep. 2019 Feb 4;9(1):1201 [PMID: 30718744]
  66. Bioelectromagnetics. 2021 May;42(4):317-328 [PMID: 33847008]
  67. Neurol India. 2020 Sep-Oct;68(5):1092-1100 [PMID: 33109858]
  68. Alzheimers Res Ther. 2020 May 20;12(1):62 [PMID: 32434556]
  69. Cell. 2019 Apr 4;177(2):256-271.e22 [PMID: 30879788]
  70. Behav Brain Res. 2013 Mar 1;240:197-201 [PMID: 23195115]
  71. Molecules. 2022 May 23;27(10): [PMID: 35630814]
  72. Bioelectromagnetics. 2017 Apr;38(3):175-185 [PMID: 28026047]
  73. J Radiat Res. 2018 Jan 1;59(1):18-26 [PMID: 29040655]
  74. Bioelectromagnetics. 2016 Sep;37(6):391-9 [PMID: 27434853]
  75. Nutrients. 2022 Jan 14;14(2): [PMID: 35057520]
  76. Bioelectromagnetics. 2008 May;29(4):257-67 [PMID: 18163423]
  77. Bioelectromagnetics. 2015 Apr;36(3):169-77 [PMID: 25690404]

Grants

  1. RS-2023-00302751/National Research Foundation of Korea

MeSH Term

Humans
Animals
Brain
Radio Waves
Neurons
Brain Diseases
Electromagnetic Fields
Alzheimer Disease

Word Cloud

Created with Highcharts 10.0.0stimulationnon-contactbrainRF-EMFelectricalneuralfunctionrecentparticularlycognitiveRadiofrequencyRF3neuronalNCNSradiofrequencyelectromagneticvitrovivomodelsstudieseffectshumanNon-invasivepainlessmethodsenhancewidelystudiedyearscontextneurodegenerativediseasesAlzheimer'sdiseaseADrelateddementiascausedeclineneurologicalsymptomsrateoscillationrangekHz300GHzTHzsuggestedonepotentialtechniqueimprovingnewtypeusesfieldexposureshownmodulateinfluencevariousactivitiesRecentexploredphysiologyareasactivitycognitionsleepbehaviorreviewsummarizefindingsstimulationsanimalclinicalcasesBrainDisease-ModifyingEffectsNon-ContactNeuronalStimulationTechnologyimprovementfields

Similar Articles

Cited By