Freshwater faces a warmer and saltier future from headwaters to coasts: climate risks, saltwater intrusion, and biogeochemical chain reactions.

Sujay S Kaushal, Sydney A Shelton, Paul M Mayer, Bennett Kellmayer, Ryan M Utz, Jenna E Reimer, Jenna Baljunas, Shantanu V Bhide, Ashley Mon, Bianca M Rodriguez-Cardona, Stanley B Grant, Tamara A Newcomer-Johnson, Joseph T Malin, Ruth R Shatkay, Daniel C Collison, Kyriaki Papageorgiou, Jazmin Escobar, Megan A Rippy, Gene E Likens, Raymond G Najjar, Alfonso I Mejia, Allison Lassiter, Ming Li, Robert J Chant
Author Information
  1. Sujay S Kaushal: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA. ORCID
  2. Sydney A Shelton: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  3. Paul M Mayer: Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR USA.
  4. Bennett Kellmayer: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  5. Ryan M Utz: Chatham University, Gibsonia, PA USA.
  6. Jenna E Reimer: Department of Soil & Water Sciences, University of Florida, Gainesville, FL USA.
  7. Jenna Baljunas: Chatham University, Gibsonia, PA USA.
  8. Shantanu V Bhide: The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA.
  9. Ashley Mon: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  10. Bianca M Rodriguez-Cardona: Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Universit�� du Qu��bec �� Montr��al, Montr��al, Canada.
  11. Stanley B Grant: The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA.
  12. Tamara A Newcomer-Johnson: Watershed and Ecosystem Characterization Division, US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH USA.
  13. Joseph T Malin: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  14. Ruth R Shatkay: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  15. Daniel C Collison: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  16. Kyriaki Papageorgiou: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  17. Jazmin Escobar: Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA.
  18. Megan A Rippy: The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA.
  19. Gene E Likens: Cary Institute of Ecosystem Studies, Millbrook, NY USA.
  20. Raymond G Najjar: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA USA.
  21. Alfonso I Mejia: Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA USA.
  22. Allison Lassiter: University of Pennsylvania Weitzman School of Design, Philadelphia, PA USA.
  23. Ming Li: Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD USA.
  24. Robert J Chant: Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA.

Abstract

Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of Salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing Salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, Salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to 'fast' and 'slow' chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO, CH, NO, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of Salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed Salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying Salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl, SO , Ca, Mg, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different Salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation-reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of Salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of Salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-025-01219-6.

Keywords

References

  1. Environ Sci Technol. 2013 Sep 17;47(18):10302-11 [PMID: 23883395]
  2. Glob Chang Biol. 2013 Oct;19(10):2976-85 [PMID: 23749653]
  3. Trends Ecol Evol. 2022 May;37(5):440-453 [PMID: 35058082]
  4. Ambio. 2021 Sep;50(9):1731-1738 [PMID: 33550571]
  5. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509922]
  6. Sci Adv. 2022 Jul;8(26):eadd1628 [PMID: 35767608]
  7. Environ Res. 2023 May 15;225:115590 [PMID: 36863651]
  8. J Environ Manage. 2019 Aug 15;244:228-234 [PMID: 31125873]
  9. Water (Basel). 2020 Aug 26;12(9):1-18 [PMID: 35615208]
  10. Environ Sci Technol. 2010 Jul 1;44(13):4903-9 [PMID: 20545352]
  11. Glob Chang Biol. 2019 Feb;25(2):549-561 [PMID: 30537235]
  12. Environ Monit Assess. 2013 Feb;185(2):1027-40 [PMID: 22488661]
  13. Sci Total Environ. 2019 Feb 20;652:278-288 [PMID: 30366328]
  14. Water Res. 2022 Aug 15;222:118922 [PMID: 35932708]
  15. Environ Sci Technol. 2018 Aug 7;52(15):8302-8308 [PMID: 29947507]
  16. Environ Pollut. 2022 May 1;300:118957 [PMID: 35124123]
  17. Ecol Lett. 2006 Apr;9(4):451-66 [PMID: 16623731]
  18. Science. 2012 Apr 27;336(6080):455-8 [PMID: 22539717]
  19. Ecol Appl. 2017 Apr;27(3):833-844 [PMID: 27992971]
  20. J Environ Qual. 1994 Sep;23(5):977-986 [PMID: 34872214]
  21. Biogeochemistry. 2018;141(3):281-305 [PMID: 31427837]
  22. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17635-17642 [PMID: 32651272]
  23. Appl Geochem. 2017 Aug 1;83:121-135 [PMID: 30220785]
  24. Sci Total Environ. 2024 Jun 20;930:172777 [PMID: 38670384]
  25. J Geophys Res Oceans. 2020 Jul;125(7):e2019JC015610 [PMID: 32728507]
  26. Front Environ Sci. 2023 Sep 22;11:1-20 [PMID: 37841559]
  27. Glob Chang Biol. 2023 Sep;29(17):4731-4749 [PMID: 37435759]
  28. Environ Sci Technol. 2009 May 15;43(10):3569-73 [PMID: 19544856]
  29. Sci Total Environ. 2022 Dec 10;851(Pt 2):157933 [PMID: 35987233]
  30. Science. 1971 Jun 11;172(3988):1128-32 [PMID: 17839819]
  31. Sci Total Environ. 2019 Oct 20;688:1056-1068 [PMID: 31726537]
  32. Nat Sustain. 2022 Apr 25;5:586-592 [PMID: 36213515]
  33. Environ Microbiol. 2024 May;26(5):e16628 [PMID: 38757470]
  34. Science. 2023 Dec 8;382(6675):1191-1195 [PMID: 38060655]
  35. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509912]
  36. Limnol Oceanogr Lett. 2023 Feb;8(1):162-172 [PMID: 36777312]
  37. Environ Sci Technol. 2009 Jun 15;43(12):4320-6 [PMID: 19603641]
  38. Nature. 2005 Aug 25;436(7054):1145-8 [PMID: 16121178]
  39. Environ Pollut. 2022 May 15;301:118971 [PMID: 35167928]
  40. Water Res. 2021 Mar 1;191:116812 [PMID: 33461082]
  41. Environ Sci Technol. 2016 Mar 15;50(6):2765-6 [PMID: 26903048]
  42. Water Sci Technol. 2003;48(9):33-43 [PMID: 14703137]
  43. Environ Sci Technol. 2017 Feb 21;51(4):2007-2014 [PMID: 28145123]
  44. Environ Sci Technol. 2008 Jan 15;42(2):410-5 [PMID: 18284139]
  45. Sci Total Environ. 2014 Aug 1;488-489:280-9 [PMID: 24836138]
  46. Nat Rev Earth Environ. 2023 Oct 31;4:770-784 [PMID: 38515734]
  47. Science. 1972 Apr 21;176(4032):288-90 [PMID: 5019780]
  48. Environ Sci Technol. 2008 Aug 15;42(16):5872-8 [PMID: 18767638]
  49. Water Res. 2022 Aug 15;222:118945 [PMID: 35963137]
  50. Innovation (Camb). 2020 Aug 01;1(2):100030 [PMID: 34557708]
  51. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4453-4458 [PMID: 28396392]
  52. Sci Total Environ. 2020 Aug 10;729:138803 [PMID: 32361438]
  53. Sci Total Environ. 2022 Nov 10;846:157336 [PMID: 35863566]
  54. Environ Pollut. 2013 Feb;173:157-67 [PMID: 23202646]
  55. Environ Monit Assess. 2009 Jun;153(1-4):435-48 [PMID: 18566904]
  56. Appl Geochem. 2020 Aug 1;119:1-104632 [PMID: 33746355]
  57. Ecotoxicology. 2008 Oct;17(7):591-7 [PMID: 18642076]
  58. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E574-E583 [PMID: 29311318]
  59. Sci Total Environ. 2019 Mar 15;656:645-658 [PMID: 30529968]
  60. J Contam Hydrol. 2019 Apr;222:56-64 [PMID: 30837160]
  61. J Contam Hydrol. 2009 Jun 26;107(1-2):66-81 [PMID: 19464750]
  62. Environ Monit Assess. 2024 Apr 9;196(5):437 [PMID: 38592553]
  63. Water Res. 2002 Dec;36(20):5045-56 [PMID: 12448553]
  64. Front Environ Sci. 2023 Apr 4;11:1-20 [PMID: 37234950]
  65. Limnol Oceanogr Lett. 2023 Feb 1;8(1):190-211 [PMID: 37539375]
  66. Biol Rev Camb Philos Soc. 2022 Feb;97(1):361-382 [PMID: 34626061]
  67. Freshw Sci. 2022 Sep 1;41(3):420-441 [PMID: 36213200]
  68. Nature. 2008 Jan 24;451(7177):449-52 [PMID: 18216851]
  69. Nat Commun. 2021 Jul 9;12(1):4232 [PMID: 34244500]
  70. Ground Water. 2013 Sep-Oct;51(5):781-803 [PMID: 23145832]
  71. Water Res. 2021 Jan 1;188:116558 [PMID: 33157473]
  72. Environ Sci Technol. 2022 Oct 4;56(19):13517-13527 [PMID: 36103712]
  73. Sci Total Environ. 2018 Dec 10;644:844-853 [PMID: 30743882]
  74. J Environ Manage. 2024 Jan 15;350:119659 [PMID: 38029500]
  75. Water (Basel). 2023 Nov 9;15(22):1-22 [PMID: 38313692]
  76. Sci Total Environ. 2014 Feb 1;470-471:543-50 [PMID: 24176702]
  77. Sci Total Environ. 2021 Aug 20;783:147013 [PMID: 33872895]
  78. Sci Total Environ. 2018 Feb 1;613-614:1498-1509 [PMID: 28797521]
  79. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  80. Appl Environ Microbiol. 1984 Aug;48(2):420-4 [PMID: 6486784]
  81. Sci Total Environ. 2019 Dec 10;695:133779 [PMID: 31412302]
  82. Harmful Algae. 2018 Mar;73:58-71 [PMID: 29602507]
  83. Environ Sci Technol. 2018 Aug 7;52(15):8124-8132 [PMID: 29932326]
  84. Sci Total Environ. 2016 Sep 15;565:462-472 [PMID: 27183460]
  85. Ecology. 1967 Sep;48(5):772-785 [PMID: 34493004]
  86. Chemosphere. 2011 Nov;85(8):1318-24 [PMID: 21862104]
  87. Environ Pollut. 2021 Sep 15;285:117636 [PMID: 34380226]
  88. Environ Sci Technol Lett. 2022 Dec 08;10(1):21-26 [PMID: 36643386]
  89. PLoS One. 2023 Dec 21;18(12):e0296128 [PMID: 38128024]
  90. Sci Total Environ. 2025 Jan 25;962:178310 [PMID: 39818486]
  91. Sci Total Environ. 2020 Nov 20;744:140947 [PMID: 32721680]
  92. Science. 2023 Apr 14;380(6641):187-191 [PMID: 37053316]
  93. Sci Total Environ. 2003 Oct 1;314-316:599-612 [PMID: 14499553]
  94. Conserv Physiol. 2020 Dec 15;8(1):coaa107 [PMID: 33365130]
  95. Water Res. 2011 Jan;45(2):933-43 [PMID: 20950834]
  96. Environ Sci Technol. 2017 Jan 3;51(1):159-166 [PMID: 27997122]
  97. Water Res. 2017 Nov 15;125:374-383 [PMID: 28881213]
  98. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509916]
  99. Sci Total Environ. 2024 Feb 20;912:168824 [PMID: 38030007]
  100. J Environ Manage. 2011 Mar;92(3):650-4 [PMID: 20980092]
  101. Environ Res Lett. 2021 Mar 1;16(3):035017-35017 [PMID: 34017359]
  102. Sci Adv. 2020 Dec 4;6(49): [PMID: 33277243]
  103. J Environ Manage. 2017 Dec 15;204(Pt 1):246-254 [PMID: 28888206]
  104. Front Environ Sci. 2023 Jun 9;11:1-28 [PMID: 37475839]
  105. J Environ Qual. 2006 Oct 27;35(6):2425-32 [PMID: 17071914]

Word Cloud

Created with Highcharts 10.0.0saltreactionsionsclimatechainchangeUSecosystemslandbiogeochemicalacrossalongcyclesalinizationchangesglobalconcentrationsseariskframeworkincreasingpollutionsaltwaterintrusionheadwaterstidalwatersSaltimpactinfrastructureduehumanorganicrelationshipsUSGSsitesmanyshiftscomingtriggerecosystemdrinkingwaterqualityenergyproductionfactorssalinitysourcesinteractionactivitiesrange2cyclesacidificationlong-termalkalinizationfreshwatersimpactsdeoxygenationmobilizationfreshwater-marinecontinuumcarbonmatterdoubletrendsChesapeakeBaymajorAlongsidefreshwaterexperiencingsubstantialcompositionssynthesizeanticipatingwillextending'chain'chemicalproductsonereactioninfluencesubsequentresponsesDifferentfoodRiskincludeamplificationpulsesprecipitationvariabilityDependingretentioncan90%watershedsgloballyretainedinteractsflowpathscontributes'fast''slow'associatedtemporarynutrientcyclingCOCHNOgreenhousegasescorrosionfoulingscalingcontaminantalsoquantitytransportedcoastsidentifywideservicesbasedanalysesof:1temporaltributariesfresheningmainstem40 yearsstreamflowlevelrisewatershedloadsriversEasternincreasedriverineexportscoastalsometimes100-foldgreaterforestreferenceconditions3varyingionconcentration-dischargeGeologicalSurvey4empiricalspecificconductanceNaClSOCaMgKN5dissolvedDOCdifferent6originalexperimentsdemonstratingcompositionnutrientsmetalsoxidation-reductionpotentialsnon-tidalalteringtransportstoragereactivityentirehelpsanticipatepreventmanagegrowinghealthaquaticlifeagricultureSupplementaryInformation:onlineversioncontainssupplementarymaterialavailable101007/s10533-025-01219-6Freshwaterfaceswarmersaltierfuturecoasts:risksAnthropogenicCarbonClimateGlobalMetalsNitrogen

Similar Articles

Cited By

No available data.