Understanding the microbiome-crop rotation nexus in karst agricultural systems: insights from Southwestern China.

Bin Wang, Nianjie Shang, Xinwei Feng, Zongling Hu, Pengfei Li, Yi Chen, Binbin Hu, Mengjiao Ding, Junju Xu
Author Information
  1. Bin Wang: College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.
  2. Nianjie Shang: Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China.
  3. Xinwei Feng: Guizhou Tobacco Company Qiannan Company, Duyun, China.
  4. Zongling Hu: Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China.
  5. Pengfei Li: Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China.
  6. Yi Chen: Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
  7. Binbin Hu: Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
  8. Mengjiao Ding: College of Tobacco Science, Guizhou University, Guiyang, China.
  9. Junju Xu: College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.

Abstract

Understanding how soil properties and microbial communities respond to crop rotation is essential for the sustainability of agroecosystems. However, there has been limited research on how crop rotation alters below-ground microbial communities in soils with serious bacterial wilt within the karst agricultural system. This study investigated the effects of continuous planting of corn, tobacco, and tobacco-corn rotation on soil microbial communities in the karst regions of Southwestern China. High-throughput sequencing was used to evaluate the responses of the soil microbial community structure to crop monoculture and rotation patterns. As expected, the tobacco-corn rotation mitigated the negative effects of continuous cropping and reduced soil acidification. The tobacco-corn rotation also significantly altered the composition of microbial communities and promoted plant growth by fostering a higher abundance of beneficial microorganisms. The predominant bacteria genera and and the predominant fungal genera and were identified as discriminant biomarkers that are critical to soil ecosystem health. pH, available potassium (AK), and available phosphorus (AP) were the primary soil factors related to the soil microbiome assembly. This study aimed to demonstrate the association between crop rotation and microbiomes, suggesting that altering cultivation patterns could enhance karst agricultural systems.

Keywords

References

  1. Environ Pollut. 2019 Apr;247:98-107 [PMID: 30669085]
  2. Environ Sci Pollut Res Int. 2024 Apr 22;: [PMID: 38648006]
  3. Annu Rev Phytopathol. 2002;40:309-48 [PMID: 12147763]
  4. Plant Dis. 2023 Apr;107(4):1060-1066 [PMID: 36122196]
  5. Front Microbiol. 2022 Nov 29;13:1033293 [PMID: 36523824]
  6. Ecotoxicology. 2014 Jul;23(5):840-50 [PMID: 24648032]
  7. J Proteomics. 2017 Feb 10;154:1-12 [PMID: 27939684]
  8. New Phytol. 2021 Mar;229(5):2873-2885 [PMID: 33131088]
  9. Microbiol Spectr. 2022 Dec 21;10(6):e0121522 [PMID: 36377898]
  10. Sci Rep. 2017 Aug 17;7(1):8598 [PMID: 28819197]
  11. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  12. Microb Ecol. 2020 Nov;80(4):762-777 [PMID: 31897569]
  13. Biotechnol Biofuels. 2020 Nov 2;13(1):181 [PMID: 33292512]
  14. Microorganisms. 2021 Jun 08;9(6): [PMID: 34201118]
  15. BMC Microbiol. 2021 Apr 1;21(1):102 [PMID: 33794774]
  16. Sci Rep. 2020 May 29;10(1):8804 [PMID: 32472015]
  17. Sci Rep. 2020 Jul 8;10(1):11231 [PMID: 32641775]
  18. ISME J. 2018 Jun;12(6):1496-1507 [PMID: 29520025]
  19. Sci Rep. 2019 Aug 29;9(1):12499 [PMID: 31467316]
  20. J Environ Manage. 2021 Jun 1;287:112351 [PMID: 33735673]
  21. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  22. Front Microbiol. 2023 Nov 03;14:1285445 [PMID: 38029158]
  23. Chemosphere. 2021 Jul;275:130109 [PMID: 33677267]
  24. Sci Rep. 2020 Feb 18;10(1):2858 [PMID: 32071331]
  25. Chin Med. 2017 Jul 3;12:18 [PMID: 28680459]
  26. Environ Microbiome. 2023 May 9;18(1):40 [PMID: 37161618]
  27. Front Microbiol. 2018 Aug 23;9:1909 [PMID: 30190708]
  28. Front Microbiol. 2024 May 21;15:1423961 [PMID: 38841068]
  29. Sci Total Environ. 2022 Apr 1;815:152956 [PMID: 34999069]
  30. Environ Microbiome. 2022 Mar 28;17(1):13 [PMID: 35346385]
  31. Science. 2018 Jan 19;359(6373):320-325 [PMID: 29348236]
  32. FEMS Microbiol Ecol. 2022 Nov 17;98(12): [PMID: 36341539]
  33. Phytopathology. 2017 Nov;107(11):1284-1297 [PMID: 28650266]
  34. Front Microbiol. 2024 Apr 12;15:1374550 [PMID: 38680924]
  35. Appl Microbiol Biotechnol. 2021 Sep;105(18):7035-7050 [PMID: 34477939]
  36. ISME J. 2021 Jan;15(1):330-347 [PMID: 33028974]
  37. ScientificWorldJournal. 2014;2014:856352 [PMID: 24995366]
  38. BMC Microbiol. 2016 Oct 6;16(1):233 [PMID: 27716043]
  39. Curr Microbiol. 2021 Jan;78(1):218-228 [PMID: 33236213]
  40. Front Microbiol. 2024 Jun 19;15:1416256 [PMID: 38962123]
  41. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  42. Microorganisms. 2019 Feb 21;7(2): [PMID: 30795626]

Word Cloud

Created with Highcharts 10.0.0soilrotationmicrobialcommunitiescropkarstagriculturaltobacco-cornUnderstandingpropertiessystemstudyeffectscontinuousSouthwesternChinapatternspredominantgeneraavailablemicrobiomeassemblyrespondessentialsustainabilityagroecosystemsHoweverlimitedresearchaltersbelow-groundsoilsseriousbacterialwiltwithininvestigatedplantingcorntobaccoregionsHigh-throughputsequencingusedevaluateresponsescommunitystructuremonocultureexpectedmitigatednegativecroppingreducedacidificationalsosignificantlyalteredcompositionpromotedplantgrowthfosteringhigherabundancebeneficialmicroorganismsbacteriafungalidentifieddiscriminantbiomarkerscriticalecosystemhealthpHpotassiumAKphosphorusAPprimaryfactorsrelatedaimeddemonstrateassociationmicrobiomessuggestingalteringcultivationenhancesystemsmicrobiome-cropnexussystems:insightsphysicochemical

Similar Articles

Cited By