Seasonal discrepancy of airborne fungal diversity and community structure in factory.

Wenbing Gong, Kaixiao Qiu, Zhen Zhuang, Lujun Zhang, Xueqing Liu, Xiao Yu, Yinbing Bian, Yang Xiao
Author Information
  1. Wenbing Gong: State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China.
  2. Kaixiao Qiu: State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China.
  3. Zhen Zhuang: Shandong Qihe Biotechnology Co., Ltd., Zibo, China.
  4. Lujun Zhang: Shandong Qihe Biotechnology Co., Ltd., Zibo, China.
  5. Xueqing Liu: Shandong Qihe Biotechnology Co., Ltd., Zibo, China.
  6. Xiao Yu: Shandong Qihe Biotechnology Co., Ltd., Zibo, China.
  7. Yinbing Bian: State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China.
  8. Yang Xiao: State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China. ORCID

Abstract

Understanding the composition and community of airborne mycobiota associated with fungal diseases was critical for mushroom production and disease control. In this study, we first investigated airborne fungi concentrations in different function areas of a Chinese shiitake factory. Then, high-throughput sequencing was employed to characterise the airborne fungal compositions and communities of this factory during high and low incidence seasons of shiitake artificial log rot disease (SLRD). The lowest concentration of culturable airborne fungi was observed in spawn-running greenhouse (250-450 CFU/m), while the airborne fungi concentrations in cultivation greenhouses were up to 7,000-8,500 CFU/m. The airborne fungal communities across distinct function areas showed convergence. The four major mushroom contaminants, , , , and were the stable core fungi. Seasonal shifts in compositions, abundances, and communities of airborne fungi were systematically analysed and found to be associated with SLRD. Compared with the SLRD low incidence season, the airborne fungal communities were rich but uneven in the SLRD high incidence season, in which was dominant. Further analysis indicated that the favourable temperature and humidity caused the proliferation of and then affected the fungal communities, which presented an SLRD-seasonal variation. SLRD incidence could be significantly reduced by reasonably increasing the ambient temperature. For the first time, we comprehensively characterised the dynamics of airborne fungal communities across the SLRD occurrence in the shiitake factory. Findings here also provided valuable information for fungal exposures in the mushroom industry.

Keywords

References

  1. Thorax. 1970 Jan;25(1):25-30 [PMID: 5461446]
  2. Sci Total Environ. 2021 Mar 15;760:144092 [PMID: 33341626]
  3. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  4. Front Microbiol. 2023 Feb 22;14:979835 [PMID: 36910237]
  5. WHO Reg Publ Eur Ser. 1990;31:1-67 [PMID: 2282136]
  6. Ann Occup Hyg. 2003 Apr;47(3):187-200 [PMID: 12639832]
  7. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  8. Sci Total Environ. 2022 May 10;820:153003 [PMID: 35031366]
  9. Appl Microbiol Biotechnol. 2013 Jun;97(11):4977-89 [PMID: 23624682]
  10. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  11. Life (Basel). 2021 Aug 23;11(8): [PMID: 34440607]
  12. Comput Struct Biotechnol J. 2021 Mar 22;19:1641-1653 [PMID: 33868600]
  13. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  14. Microbiologyopen. 2016 Aug;5(4):709-18 [PMID: 27147196]
  15. Appl Microbiol Biotechnol. 2018 Sep;102(18):7795-7803 [PMID: 30027491]
  16. Food Microbiol. 2023 Sep;114:104307 [PMID: 37290864]
  17. Ecotoxicol Environ Saf. 2022 Sep 15;243:113991 [PMID: 36007318]
  18. Front Microbiol. 2015 Oct 22;6:1055 [PMID: 26557107]
  19. Front Microbiol. 2022 Jun 14;13:928921 [PMID: 35774467]
  20. Nat Rev Microbiol. 2019 Jan;17(2):95-109 [PMID: 30442909]
  21. Sci Rep. 2016 Feb 26;6:22259 [PMID: 26915788]
  22. Am J Ind Med. 2007 Dec;50(12):1010-7 [PMID: 17979128]
  23. Sci Total Environ. 2021 Jan 10;751:142335 [PMID: 33181979]
  24. J Microbiol. 2012 Dec;50(6):1053-7 [PMID: 23274995]
  25. Microbiome. 2018 Jan 27;6(1):18 [PMID: 29374490]
  26. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]

Word Cloud

Created with Highcharts 10.0.0airbornefungalfungiSLRDcommunitiesfactoryshiitakeincidencecommunitymushroomdiseaseconcentrationstemperaturecompositionassociatedfirstfunctionareascompositionshighlowartificiallogrotCFU/macrossSeasonalseasonhumidityUnderstandingmycobiotadiseasescriticalproductioncontrolstudyinvestigateddifferentChinesehigh-throughputsequencingemployedcharacteriseseasonslowestconcentrationculturableobservedspawn-runninggreenhouse250-450cultivationgreenhouses7000-8500distinctshowedconvergencefourmajorcontaminantsstablecoreshiftsabundancessystematicallyanalysedfoundComparedrichunevendominantanalysisindicatedfavourablecausedproliferationaffectedpresentedSLRD-seasonalvariationsignificantlyreducedreasonablyincreasingambienttimecomprehensivelycharacteriseddynamicsoccurrenceFindingsalsoprovidedvaluableinformationexposuresindustrydiscrepancydiversitystructureShiitake

Similar Articles

Cited By

No available data.