Neurostimulation devices to treat Alzheimer's disease.

Felipe P Perez, Brett Walker, Jorge Morisaki, Haitham Kanakri, Maher Rizkalla
Author Information
  1. Felipe P Perez: Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ORCID
  2. Brett Walker: Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
  3. Jorge Morisaki: Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
  4. Haitham Kanakri: Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA.
  5. Maher Rizkalla: Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA.

Abstract

The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (A��). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.

Keywords

References

  1. Psychol Med. 2014 Oct;44(14):2985-94 [PMID: 25065412]
  2. Trends Neurosci. 2018 Jul;41(7):418-428 [PMID: 29735372]
  3. Mol Psychiatry. 2022 Apr;27(4):2000-2009 [PMID: 35115703]
  4. AIMS Neurosci. 2024 Sep 27;11(3):398-420 [PMID: 39431268]
  5. Neuromodulation. 2018 Feb;21(2):184-190 [PMID: 28653404]
  6. Tissue Eng Part A. 2011 Oct;17(19-20):2573-82 [PMID: 21615217]
  7. J Biomed Sci Eng. 2022 Aug;15(8):219-227 [PMID: 36032690]
  8. J Alzheimers Dis. 2021;80(1):53-70 [PMID: 33492288]
  9. Health Phys. 1998 Apr;74(4):494-522 [PMID: 9525427]
  10. Magn Reson Med. 2002 May;47(5):982-9 [PMID: 11979578]
  11. Front Aging Neurosci. 2022 May 02;14:829049 [PMID: 35585867]
  12. Physiol Meas. 1998 May;19(2):127-48 [PMID: 9626678]
  13. Neurotoxicology. 2016 Mar;53:290-300 [PMID: 26945731]
  14. Phys Med Biol. 1996 Nov;41(11):2251-69 [PMID: 8938025]
  15. Eur J Neurol. 2008 Dec;15(12):1286-92 [PMID: 19049544]
  16. Neurosci Bull. 2023 Aug;39(8):1289-1308 [PMID: 36443453]
  17. Brain. 2015 Jul;138(Pt 7):1833-42 [PMID: 26106097]
  18. Int J Mol Sci. 2024 Oct 21;25(20): [PMID: 39457098]
  19. Arch Med Res. 2013 Apr;44(3):178-84 [PMID: 23523687]
  20. Sci Rep. 2017 Mar 17;7:44521 [PMID: 28303965]
  21. Biochem Biophys Res Commun. 2023 May 28;658:97-106 [PMID: 37030070]
  22. Int J Mol Sci. 2023 Feb 13;24(4): [PMID: 36835161]
  23. Front Aging Neurosci. 2023 Feb 16;15:1102809 [PMID: 36875694]
  24. J Neurol Sci. 2014 Nov 15;346(1-2):318-22 [PMID: 25216556]
  25. World Neurosurg. 2013 Sep-Oct;80(3-4):S27.e35-43 [PMID: 23246738]
  26. Differentiation. 2002 May;70(2-3):120-9 [PMID: 12076339]
  27. Int J Mol Sci. 2023 Sep 07;24(18): [PMID: 37762105]
  28. BMC Med Ethics. 2018 Jun 11;19(1):41 [PMID: 29886845]
  29. Nature. 2016 Dec 7;540(7632):230-235 [PMID: 27929004]
  30. Neurology (Chic). 2024;3(1): [PMID: 38699565]
  31. Restor Neurol Neurosci. 2011;29(3):167-75 [PMID: 21586823]
  32. Sci Rep. 2021 Jan 12;11(1):621 [PMID: 33436686]
  33. Front Aging Neurosci. 2021 Mar 11;13:619543 [PMID: 33776742]
  34. Int J Mol Sci. 2023 Jul 05;24(13): [PMID: 37446295]
  35. Biochemistry. 2012 Aug 28;51(34):6860-70 [PMID: 22857146]
  36. Pathophysiology. 2011 Jun;18(3):193-9 [PMID: 21112192]
  37. Neuropsychiatr Dis Treat. 2015 Sep 18;11:2391-404 [PMID: 26425094]
  38. Curr Aging Sci. 2012 Jul;5(2):87-95 [PMID: 21834787]
  39. Exp Gerontol. 2008 Apr;43(4):307-16 [PMID: 18325704]
  40. Biomed Res Int. 2019 Mar 5;2019:1431760 [PMID: 30949496]
  41. J Biosci. 2018 Jun;43(2):263-276 [PMID: 29872015]
  42. Indian J Exp Biol. 2012 Dec;50(12):889-96 [PMID: 23986973]
  43. J Gerontol A Biol Sci Med Sci. 2010 Nov;65(11):1220-7 [PMID: 20622138]
  44. Radiat Res. 2007 Oct;168(4):471-9 [PMID: 17903040]
  45. Int J Mol Sci. 2019 Nov 19;20(22): [PMID: 31752429]
  46. Curr Alzheimer Res. 2015;12(5):481-92 [PMID: 26017559]
  47. Ageing Res Rev. 2023 Mar;85:101862 [PMID: 36693451]
  48. J Alzheimers Dis. 2012;32(2):243-66 [PMID: 22810103]
  49. Cell. 2023 Jan 19;186(2):243-278 [PMID: 36599349]
  50. Adv Exp Med Biol. 2023;1409:23-49 [PMID: 35995906]
  51. J Neurochem. 2006 Mar;96(6):1519-30 [PMID: 16539681]
  52. Medicines (Basel). 2022 Aug 03;9(8): [PMID: 36005647]
  53. J Neurol. 2012 Jan;259(1):83-92 [PMID: 21671144]
  54. Brain Res. 2016 Jul 1;1642:10-19 [PMID: 26972535]
  55. Neurosci Biobehav Rev. 2024 Oct;165:105831 [PMID: 39074672]
  56. Neurology. 1996 Dec;47(6):1594-600 [PMID: 8960756]
  57. Int J Environ Res Public Health. 2019 Jan 26;16(3): [PMID: 30691095]
  58. J Biomed Sci. 2022 Jun 13;29(1):39 [PMID: 35698225]
  59. Free Neuropathol. 2020;1: [PMID: 33345256]
  60. J Cell Biochem. 2003 May 1;89(1):48-55 [PMID: 12682907]
  61. Toxicol Ind Health. 2018 Jan;34(1):23-35 [PMID: 29166827]
  62. Ann Neurol. 2008 Jan;63(1):119-23 [PMID: 18232017]
  63. J Clin Psychiatry. 2006 Aug;67(8):1171-8 [PMID: 16965193]
  64. Neurosci Bull. 2024 Jul;40(7):857-871 [PMID: 37971654]
  65. Nat Commun. 2017 Oct 31;8(1):1214 [PMID: 29089479]
  66. Rejuvenation Res. 2008 Dec;11(6):1049-57 [PMID: 19119860]
  67. Neural Regen Res. 2016 Dec;11(12):1888-1895 [PMID: 28197174]
  68. BMC Neurol. 2016 Jan 12;16:6 [PMID: 26757896]
  69. PLoS One. 2013 Apr 22;8(4):e61661 [PMID: 23613896]
  70. Brain Res. 2015 Mar 19;1601:92-101 [PMID: 25598203]
  71. J Psychiatry Neurosci. 2016 Mar;41(2):105-14 [PMID: 26395813]
  72. Pathophysiology. 2019 Sep - Dec;26(3-4):203-212 [PMID: 30850244]
  73. Science. 2002 Jul 19;297(5580):353-6 [PMID: 12130773]
  74. J Alzheimers Dis. 2010;19(1):191-210 [PMID: 20061638]
  75. Neurochem Res. 2004 Mar;29(3):637-50 [PMID: 15038611]
  76. AIMS Neurosci. 2020 Dec 16;8(1):86-132 [PMID: 33490374]
  77. Ageing Res Rev. 2022 Aug;79:101668 [PMID: 35705176]
  78. J Clin Psychiatry. 2011 Jan;72(1):91-7 [PMID: 21208587]
  79. Exp Neurobiol. 2016 Oct;25(5):197-204 [PMID: 27790054]
  80. Environ Sci Pollut Res Int. 2016 Dec;23(24):25343-25355 [PMID: 27696165]
  81. Brain Behav. 2020 Nov;10(11):e01815 [PMID: 32856797]
  82. Neuropsychopharmacology. 2017 Dec;42(13):2493-2503 [PMID: 28540926]
  83. Bioelectrochemistry. 2002 Jul;57(1):9-15 [PMID: 12049751]
  84. PLoS One. 2011 May 05;6(5):e19437 [PMID: 21573218]
  85. J Alzheimers Dis. 2014;40(1):1-17 [PMID: 24326519]
  86. J Neurophysiol. 2004 Apr;91(4):1457-69 [PMID: 14668299]
  87. Brain Stimul. 2013 Jan;6(1):72-7 [PMID: 22405739]
  88. Neurosci Biobehav Rev. 2011 Jan;35(3):516-36 [PMID: 20599555]
  89. Magn Reson Med. 2023 Jun;89(6):2376-2390 [PMID: 36656151]
  90. Int J Neurosci. 1994 Jun;76(3-4):185-225 [PMID: 7960477]
  91. Rev Environ Health. 2023 Apr 07;39(3):519-529 [PMID: 37021652]
  92. J Alzheimers Dis. 2022;87(1):101-129 [PMID: 35275549]
  93. BJPsych Bull. 2017 Oct;41(5):281-286 [PMID: 29018554]
  94. J Alzheimers Dis. 2020;73(2):467-476 [PMID: 31796670]
  95. Transl Stroke Res. 2014 Aug;5(4):491-500 [PMID: 24549571]
  96. iScience. 2024 Feb 10;27(3):109201 [PMID: 38433903]
  97. Brain Struct Funct. 2019 Jan;224(1):363-372 [PMID: 30341742]
  98. J Sleep Res. 2007 Sep;16(3):253-8 [PMID: 17716273]
  99. J Alzheimers Dis. 2018;62(2):621-633 [PMID: 29400666]
  100. J Neuroinflammation. 2016 Nov 21;13(1):296 [PMID: 27871289]
  101. Brain Stimul. 2018 Mar - Apr;11(2):435-444 [PMID: 29246746]
  102. Cell Biochem Biophys. 2015 Sep;73(1):93-100 [PMID: 25672490]
  103. Bioimpacts. 2024;14(4):30064 [PMID: 39104617]
  104. Nat Commun. 2022 Dec 14;13(1):7707 [PMID: 36517479]
  105. Biol Psychiatry. 2000 Jun 15;47(12):1043-9 [PMID: 10862803]
  106. Sci Rep. 2017 Jan 20;7:41129 [PMID: 28106136]
  107. Bioelectromagnetics. 2015 Apr;36(3):219-32 [PMID: 25708841]
  108. Int J Radiat Biol. 2015 Jan;91(1):28-34 [PMID: 25118893]
  109. Int J Mol Sci. 2022 Dec 30;24(1): [PMID: 36614120]
  110. Behav Brain Res. 2014 Jan 1;258:80-9 [PMID: 24144546]
  111. Addiction. 2019 Dec;114(12):2137-2149 [PMID: 31328353]
  112. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14914-9 [PMID: 19706382]
  113. J Biomed Phys Eng. 2023 Feb 01;13(1):3-16 [PMID: 36818013]
  114. J Alzheimers Dis. 2019;72(2):613-622 [PMID: 31609693]
  115. J Occup Environ Med. 2002 Jan;44(1):66-72 [PMID: 11802468]
  116. PLoS One. 2015 May 15;10(5):e0126963 [PMID: 25978363]
  117. J Alzheimers Dis. 2019;71(1):57-82 [PMID: 31403948]
  118. Sci Rep. 2015 Oct 12;5:14914 [PMID: 26456585]
  119. Neurol Ther. 2019 Dec;8(2):325-350 [PMID: 31435870]
  120. Int J Radiat Biol. 2015 Mar;91(3):262-9 [PMID: 25426698]
  121. Toxicol Lett. 2006 Jul 14;164(3):268-77 [PMID: 16513298]
  122. Pathophysiology. 2009 Aug;16(2-3):71-8 [PMID: 19268550]
  123. Mol Brain. 2022 Feb 23;15(1):20 [PMID: 35197102]
  124. Oncotarget. 2017 May 16;8(20):33864-33871 [PMID: 27823981]
  125. Biogerontology. 2024 Feb;25(1):147-160 [PMID: 37707683]
  126. Anticancer Res. 2016 Nov;36(11):5821-5826 [PMID: 27793904]
  127. Adv Ther. 2022 Jan;39(1):286-295 [PMID: 34716559]
  128. Bioelectromagnetics. 1996;17(3):195-208 [PMID: 8809359]
  129. J Neurol Neurosurg Psychiatry. 2022 May;93(5):568-570 [PMID: 34764150]
  130. JAMA Neurol. 2017 Feb 1;74(2):207-215 [PMID: 27992627]
  131. J Psychiatr Res. 2016 Dec;83:47-53 [PMID: 27552533]
  132. Trends Cell Biol. 2016 Jan;26(1):17-28 [PMID: 26597576]
  133. Mayo Clin Proc. 2017 Sep;92(9):1427-1444 [PMID: 28870357]
  134. J Neurophysiol. 2015 Apr 1;113(7):2753-9 [PMID: 25695646]
  135. Neurotherapeutics. 2023 Mar;20(2):419-430 [PMID: 36477709]
  136. Alzheimers Dement. 2022 Apr;18(4):700-789 [PMID: 35289055]
  137. Exp Brain Res. 2024 Aug;242(8):1983-1998 [PMID: 38935089]
  138. Int J Mol Sci. 2023 Jun 25;24(13): [PMID: 37445806]
  139. Occup Environ Med. 2007 Feb;64(2):108-14 [PMID: 17043077]
  140. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  141. Psychiatr Q. 2024 Mar;95(1):107-120 [PMID: 38127248]
  142. Indian J Biochem Biophys. 2013 Apr;50(2):114-9 [PMID: 23720885]
  143. Neuroscience. 2019 Jun 1;408:46-57 [PMID: 30953670]
  144. Neural Regen Res. 2023 Nov;18(11):2497-2503 [PMID: 37282482]
  145. Neurosci Lett. 2018 Feb 14;666:64-69 [PMID: 29273398]
  146. J Neuropathol Exp Neurol. 2011 Nov;70(11):960-9 [PMID: 22002422]
  147. PLoS One. 2012;7(4):e35751 [PMID: 22558216]
  148. J Neuroinflammation. 2010 Sep 09;7:54 [PMID: 20828402]
  149. Behav Brain Res. 1995 Mar;67(2):211-9 [PMID: 7779292]
  150. Neuroscience. 2011 Jun 30;185:135-49 [PMID: 21514369]
  151. J Neural Transm (Vienna). 2011 Mar;118(3):463-71 [PMID: 21246222]
  152. Int J Radiat Biol. 2017 Feb;93(2):249-256 [PMID: 27648632]
  153. Front Aging Neurosci. 2017 Sep 12;9:292 [PMID: 28955219]
  154. Seizure. 2013 Dec;22(10):827-33 [PMID: 23867218]
  155. Front Psychiatry. 2018 May 22;9:201 [PMID: 29910746]
  156. Brain. 2015 Oct;138(Pt 10):2814-33 [PMID: 26283673]
  157. Biotech Histochem. 2017;92(5):324-330 [PMID: 28506085]
  158. Metab Brain Dis. 2009 Dec;24(4):629-41 [PMID: 19823925]
  159. Mech Ageing Dev. 2021 Dec;200:111575 [PMID: 34600936]
  160. Neurosci Lett. 2012 Sep 27;526(2):122-7 [PMID: 22925660]
  161. Neurosci Lett. 2007 May 11;418(1):9-12 [PMID: 17382472]
  162. Annu Rev Med. 2024 Jan 29;75:99-111 [PMID: 38285515]
  163. Electromagn Biol Med. 2013 Mar;32(1):95-120 [PMID: 23320614]
  164. J Magn Reson Imaging. 2018 Jun 13;: [PMID: 29897651]
  165. J Biomed Sci Eng. 2016 Aug;9(9):437-444 [PMID: 27617054]
  166. Int J Neurosci. 2018 Aug;128(8):691-696 [PMID: 29185809]
  167. Cells. 2021 Dec 19;10(12): [PMID: 34944091]
  168. Brain Stimul. 2013 Jan;6(1):1-13 [PMID: 22483681]
  169. Physiol Behav. 2017 Nov 1;181:1-9 [PMID: 28866028]
  170. Bioengineering (Basel). 2024 Jan 01;11(1): [PMID: 38247923]
  171. Bioelectromagnetics. 1997;18(7):499-505 [PMID: 9338631]
  172. Arch Neurol. 2006 Nov;63(11):1602-4 [PMID: 17101829]
  173. Neurology. 1999 Nov 10;53(8):1731-5 [PMID: 10563620]
  174. Fluids Barriers CNS. 2022 Mar 14;19(1):21 [PMID: 35287702]
  175. PLoS One. 2014 Apr 17;9(4):e95503 [PMID: 24743689]
  176. Nonlinearity Biol Toxicol Med. 2005 Jan;3(1):9-21 [PMID: 19330154]
  177. Curr Alzheimer Res. 2020;17(11):1001-1012 [PMID: 33256578]
  178. Braz J Psychiatry. 2013;35 Suppl 2:S82-91 [PMID: 24271230]
  179. Front Hum Neurosci. 2022 Apr 29;16:866434 [PMID: 35572001]
  180. Science. 2010 Dec 24;330(6012):1774 [PMID: 21148344]
  181. Neuron. 2003 Dec 18;40(6):1087-93 [PMID: 14687544]
  182. Brain Stimul. 2019 Jan - Feb;12(1):161-174 [PMID: 30181106]
  183. J Biosci Med (Irvine). 2023 Feb;11(2):177-185 [PMID: 36945328]
  184. Int J Radiat Biol. 2013 Dec;89(12):1100-7 [PMID: 23786183]
  185. Behav Brain Res. 2013 Mar 1;240:197-201 [PMID: 23195115]
  186. J Radiat Res. 2018 Jan 1;59(1):18-26 [PMID: 29040655]
  187. Front Neurosci. 2020 Jan 29;13:1444 [PMID: 32063825]
  188. Clin EEG Neurosci. 2012 Jul;43(3):192-9 [PMID: 22956647]
  189. ACS Chem Neurosci. 2020 Mar 4;11(5):796-805 [PMID: 32056421]
  190. J Biomed Sci Eng. 2017 Sep;10(9):421-430 [PMID: 28959376]
  191. J Alzheimers Dis. 2016 Mar 25;52(2):651-60 [PMID: 27031491]
  192. Diagnostics (Basel). 2020 Nov 27;10(12): [PMID: 33261167]
  193. Neuromodulation. 2016 Jul;19(5):451-8 [PMID: 27018335]
  194. Br J Pharmacol. 2019 Sep;176(18):3508-3514 [PMID: 30820936]
  195. Alzheimers Dement (N Y). 2021 May 13;7(1):e12178 [PMID: 34027028]
  196. J Cell Physiol. 2014 Nov;229(11):1776-86 [PMID: 24676932]
  197. Exp Gerontol. 2013 Aug;48(8):786-94 [PMID: 23665072]
  198. Neuroreport. 2007 May 28;18(8):803-7 [PMID: 17471070]
  199. Front Neurosci. 2023 Apr 11;17:1081938 [PMID: 37113145]
  200. Front Aging Neurosci. 2010 Nov 24;2:151 [PMID: 21151376]
  201. Zool Res. 2024 Jul 18;45(4):924-936 [PMID: 39021081]
  202. Front Hum Neurosci. 2013 Oct 23;7:687 [PMID: 24167483]
  203. Electromagn Biol Med. 2012 Mar;31(1):67-74 [PMID: 22268730]
  204. Neuropharmacology. 2015 Oct;97:210-9 [PMID: 26051398]
  205. Neuroscience. 2014 Oct 10;278:313-26 [PMID: 25171788]
  206. J Cell Biochem. 2002;86(3):490-6 [PMID: 12210755]
  207. Biomol Ther (Seoul). 2019 May 1;27(3):265-275 [PMID: 30481957]
  208. Science. 2023 Aug 4;381(6657):466-467 [PMID: 37535727]
  209. Neuromolecular Med. 2022 Jun;24(2):169-182 [PMID: 34216357]
  210. Bioelectromagnetics. 2016 Sep;37(6):391-9 [PMID: 27434853]
  211. J Alzheimers Dis. 2016 Jul 1;53(4):1375-88 [PMID: 27392866]
  212. J Alzheimers Dis. 2010;20(2):599-606 [PMID: 20164553]
  213. Radiat Res. 2021 Oct 01;196(4):404-416 [PMID: 34407201]

Grants

  1. UL1 TR000006/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0ADdevicesstimulationEMFneurostimulationreviewclinicaldiseasetherapeutichumantreatmentAlzheimer'sfieldmechanismactionindicationsprovidingNeurostimulationtargetsbrainareaselectromagneticmolecularpromotespecificeffectsdevicecellparametersapplicationusegrowingexamineprocessRapidadvancementstechnologiesnon-pharmacologicalreliefpatientsaffectedpathologytherapiesincludeelectricalcircuitry-levelconnectionimportanthippocampusinduceneuromodulationdysfunctionalneuralcircuitryanti-amyloidpathwaysdegradationbeta-amyloidA��targetdiffusecorticalsubcorticalmodulateneuronalactivityelectrophysiologicalpathwaylevelattemptsdetermineeffectivesafeprovidesoverviewpotentialcurrentSeveralshownbeneficialharmfuleffectculturesanimalmodelsstudiescontradictoryresultsmayrelatedfrequencypenetrationdepthpowerdepositionmeasuredabsorptionratetimeexposuretypetissuedielectricpropertiesBaseddeterminingoptimalunderstandingessentialsuggestsrepeatedREMFSappropriatetreatmentsnecessaryconsidercomplicatedinterconnectedgeneticepigeneticREMFS-biologicalsysteminteractionwillmoveforwardurgentlyneededtherapytreatAlzheimer���sfieldspreclinical

Similar Articles

Cited By

No available data.