Circulating CD34 Cells: A New Biomarker of Residual Pulmonary Vascular Obstruction after Pulmonary Embolism.
Nicolas Gendron, Benjamin Planquette, Anne Roche, Richard Chocron, Dominique Helley, Aurélien Philippe, Pierre-Emmanuel Morange, Pascale Gaussem, Olivier Sanchez, David M Smadja
Author Information
Nicolas Gendron: Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
Benjamin Planquette: Respiratory Medicine Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
Anne Roche: INSERM UMR-S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
Richard Chocron: Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Dominique Helley: Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
Aurélien Philippe: Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
Pierre-Emmanuel Morange: F-CRIN INNOVTE, Saint-Étienne, France.
Pascale Gaussem: Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
Olivier Sanchez: Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
David M Smadja: Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France. david.smadja@me.com. ORCID
Pulmonary embolism (PE) is a life-threatening condition with long-term complications, including residual pulmonary vascular obstruction (RPVO). RPVO is associated with an increased risk of venous thromboembolism recurrence, chronic symptoms, and reduced quality of life. We hypothesize that an endothelial activation and vascular injury play a central role in the pathophysiology of RPVO. This prospective monocentric study investigates the potential of circulating biomarkers, including CD34⁺ cells, circulating endothelial cells (CECs), and platelet-derived growth factor BB (PDGF-BB), as indicators of vascular sequelae and predictors of RPVO. We included 56 patients with a first episode of PE. Biomarker levels were measured at PE diagnosis and six months later, coinciding with RPVO assessment using ventilation-perfusion lung scans. This defined groups of patients with (RPVO ≥ 10%) and without (RPVO < 10%) perfusion defects. Associations between biomarker levels, presence of perfusion defects, and clinical parameters were analyzed. At PE diagnosis, CEC and PDGF-BB levels were significantly elevated in patients compared to healthy controls, while CD34⁺ levels showed no difference. At the six-month follow-up, patients with perfusion defects exhibited significantly lower CD34⁺ cell levels compared to those without (median 1440 cells/mL vs. 2960 cells/mL). No significant differences in CEC or PDGF-BB levels were observed at follow-up. In conclusion, low CD34⁺ cell levels at RPVO assessment suggest a decreased regenerative potential contributing to thrombus persistence. CD34⁺ cells may serve as biomarkers for perfusion defects and warrant further study for their potential role in guiding clinical management of PE complications.
Heit, J. A., Spencer, F. A., & White, R. H. (2016). The epidemiology of venous thromboembolism. Journal of Thrombosis and Thrombolysis, 41(1), 3–14. https://doi.org/10.1007/s11239-015-1311-6
[DOI: 10.1007/s11239-015-1311-6]
Sanchez, O., Benhamou, Y., Bertoletti, L., Constant, J., Couturaud, F., Delluc, A., & Sevestre, M. A. (2019). [Recommendations of good practice for the management of thromboembolic venous disease in adults. Short version]. Revue Des Maladies Respiratoires, 36(2), 249–283. https://doi.org/10.1016/j.rmr.2019.01.003
[DOI: 10.1016/j.rmr.2019.01.003]
Klok, F. A., van der Hulle, T., den Exter, P. L., Lankeit, M., Huisman, M. V., & Konstantinides, S. (2014). The post-PE syndrome: A new concept for chronic complications of pulmonary embolism. Blood Reviews, 28(6), 221–226. https://doi.org/10.1016/j.blre.2014.07.003
[DOI: 10.1016/j.blre.2014.07.003]
Planquette, B., Ferré, A., Peron, J., Vial-Dupuy, A., Pastre, J., Mourin, G., & Sanchez, O. (2016). Residual pulmonary vascular obstruction and recurrence after acute pulmonary embolism. A single center cohort study. Thrombosis Research, 148, 70–75. https://doi.org/10.1016/j.thromres.2016.10.030
[DOI: 10.1016/j.thromres.2016.10.030]
Tromeur, C., Sanchez, O., Presles, E., Pernod, G., Bertoletti, L., Jego, P., & PADIS-PE Investigators18. (2018). Risk factors for recurrent venous thromboembolism after unprovoked pulmonary embolism: The PADIS-PE randomised trial. The European Respiratory Journal, 51(1). https://doi.org/10.1183/13993003.01202-2017
Sanchez, O., Helley, D., Couchon, S., Roux, A., Delaval, A., Trinquart, L., & Meyer, G. (2010). Perfusion defects after pulmonary embolism: Risk factors and clinical significance. Journal of Thrombosis and Haemostasis: JTH, 8(6), 1248–1255. https://doi.org/10.1111/j.1538-7836.2010.03844.x
[DOI: 10.1111/j.1538-7836.2010.03844.x]
Planquette, B., Sanchez, O., Marsh, J. J., Chiles, P. G., Emmerich, J., Le Gal, G., & Morris, T. A. (2018). Fibrinogen and the prediction of residual obstruction manifested after pulmonary embolism treatment. The European Respiratory Journal, 52(5). https://doi.org/10.1183/13993003.01467-2018
Konstantinides, S. V., Torbicki, A., Agnelli, G., Danchin, N., Fitzmaurice, D., Galiè, N., & Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). (2014). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. European Heart Journal, 35(43), 3033–3069. https://doi.org/10.1093/eurheartj/ehu283
Humbert, M., Guignabert, C., Bonnet, S., Dorfmüller, P., Klinger, J. R., Nicolls, M. R., & Rabinovitch, M. (2019). Pathology and pathobiology of pulmonary hypertension: State of the Art and research perspectives. The European Respiratory Journal, 53(1). https://doi.org/10.1183/13993003.01887-2018
Quarck, R., Willems, L., Tielemans, B., Stoian, L., Ronisz, A., Wagenaar, A., & Delcroix, M. (2023). Impairment of angiogenesis-driven clot resolution is a key event in the progression to chronic thromboembolic pulmonary hypertension: Validation in a novel rabbit model. Arteriosclerosis Thrombosis and Vascular Biology, 43(7), 1308–1321. https://doi.org/10.1161/ATVBAHA.122.317262
[DOI: 10.1161/ATVBAHA.122.317262]
Modarai, B., Burnand, K. G., Sawyer, B., & Smith, A. (2005). Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation, 111(20), 2645–2653. https://doi.org/10.1161/CIRCULATIONAHA.104.492678
Waltham, M., Burnand, K., Fenske, C., Modarai, B., Humphries, J., & Smith, A. (2005). Vascular endothelial growth factor naked DNA gene transfer enhances thrombus recanalization and resolution. Journal of Vascular Surgery, 42(6), 1183–1189. https://doi.org/10.1016/j.jvs.2005.07.017
[DOI: 10.1016/j.jvs.2005.07.017]
Modarai, B., Humphries, J., Burnand, K. G., Gossage, J. A., Waltham, M., Wadoodi, A., & Smith, A. (2008). Adenovirus-mediated VEGF gene therapy enhances venous thrombus recanalization and resolution. Arteriosclerosis Thrombosis and Vascular Biology, 28(10), 1753–1759. https://doi.org/10.1161/ATVBAHA.108.170571
[DOI: 10.1161/ATVBAHA.108.170571]
Alias, S., Redwan, B., Panzenboeck, A., Winter, M. P., Schubert, U., Voswinckel, R., & Lang, I. M. (2014). Defective angiogenesis delays thrombus resolution: A potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arteriosclerosis Thrombosis and Vascular Biology, 34(4), 810–819. https://doi.org/10.1161/ATVBAHA.113.302991
[DOI: 10.1161/ATVBAHA.113.302991]
Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., & Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science (New York N Y), 275(5302), 964–967. https://doi.org/10.1126/science.275.5302.964
[DOI: 10.1126/science.275.5302.964]
Hassanpour, M., Salybekov, A. A., Kobayashi, S., & Asahara, T. (2023). CD34 positive cells as endothelial progenitor cells in biology and medicine. Frontiers in Cell and Developmental Biology, 11, 1128134. https://doi.org/10.3389/fcell.2023.1128134
[DOI: 10.3389/fcell.2023.1128134]
Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the international society on thrombosis and haemostasis SSC. Journal of Thrombosis and Haemostasis: JTH, 17(7), 1190–1194. https://doi.org/10.1111/jth.14462
[DOI: 10.1111/jth.14462]
Domingues, A., Rossi, E., Bujko, K., Detriche, G., Richez, U., Blandinieres, A., & Ratajczak, M. Z. (2022). Human CD34 + very small embryonic-like stem cells can give rise to endothelial colony-forming cells with a multistep differentiation strategy using UM171 and nicotinamide acid. Leukemia, 36(5), 1440–1443. https://doi.org/10.1038/s41375-022-01517-0
[DOI: 10.1038/s41375-022-01517-0]
Blandinieres, A., Randi, A. M., Paschalaki, K. E., Guerin, C. L., Melero-Martin, J. M., & Smadja, D. M. (2023). Results of an international survey about methods used to isolate human endothelial colony-forming cells (ECFCs): Guidance from the scientific and standardization committee on vascular biology of the international society of thrombosis and hemostasis. Journal of Thrombosis and Haemostasis: JTH, S1538-7836(23), 00498–00491. https://doi.org/10.1016/j.jtha.2023.06.014
[DOI: 10.1016/j.jtha.2023.06.014]
Hénon, P. (2020). Key success factors for regenerative medicine in acquired heart diseases. Stem Cell Reviews and Reports, 16(3), 441–458. https://doi.org/10.1007/s12015-020-09961-0
[DOI: 10.1007/s12015-020-09961-0]
Rigato, M., Avogaro, A., & Fadini, G. P. (2016). Levels of circulating progenitor cells, cardiovascular outcomes and death: A meta-analysis of prospective observational studies. Circulation Research, 118(12), 1930–1939. https://doi.org/10.1161/CIRCRESAHA.116.308366
[DOI: 10.1161/CIRCRESAHA.116.308366]
Roncalli, J., Roubille, F., Meyer, N., Pompilio, G., Leroux, L., Henon, P., & EXCELLENT Trial Investigators. (2024). Transendocardial injection of expanded autologous CD34 + cells after myocardial infarction: Design of the EXCELLENT trial. ESC Heart Failure. https://doi.org/10.1002/ehf2.15124
[DOI: 10.1002/ehf2.15124]
Pasquet, S., Sovalat, H., Hénon, P., Bischoff, N., Arkam, Y., Ojeda-Uribe, M., & Monassier, J. P. (2009). Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34 + cells containing cardiac progenitors on regional heart structure and function after myocardial infarct. Cytotherapy, 11(8), 1002–1015. https://doi.org/10.3109/14653240903164963
[DOI: 10.3109/14653240903164963]
Johnson, G. L., Henry, T. D., Povsic, T. J., Losordo, D. W., Garberich, R. F., Stanberry, L. I., & Traverse, J. H. (2020). CD34 + cell therapy significantly reduces adverse cardiac events, health care expenditures, and mortality in patients with refractory angina. Stem Cells Translational Medicine, 9(10), 1147–1152. https://doi.org/10.1002/sctm.20-0046
[DOI: 10.1002/sctm.20-0046]
Losordo, D. W., Kibbe, M. R., Mendelsohn, F., Marston, W., Driver, V. R., Sharafuddin, M., Autologous, & CD34 + Cell Therapy for Critical Limb Ischemia Investigators. (2012). A randomized, controlled pilot study of autologous CD34 + cell therapy for critical limb ischemia. Circulation Cardiovascular Interventions, 5(6), 821–830. https://doi.org/10.1161/CIRCINTERVENTIONS.112.968321
[DOI: 10.1161/CIRCINTERVENTIONS.112.968321]
Ohtake, T., Itaba, S., Salybekov, A. A., Sheng, Y., Sato, T., Yanai, M., & Kobayashi, S. (2023). Repetitive administration of cultured human CD34 + cells improve adenine-induced kidney injury in mice. World Journal of Stem Cells, 15(4), 268–280. https://doi.org/10.4252/wjsc.v15.i4.268
[DOI: 10.4252/wjsc.v15.i4.268]
Woywodt, A., Erdbruegger, U., & Haubitz, M. (2006). Circulating endothelial cells and endothelial progenitor cells after angioplasty: News from the endothelial rescue squad. Journal of Thrombosis and Haemostasis: JTH, 4(5), 976–978. https://doi.org/10.1111/j.1538-7836.2006.01920.x
[DOI: 10.1111/j.1538-7836.2006.01920.x]
Woywodt, A., Blann, A. D., Kirsch, T., Erdbruegger, U., Banzet, N., Haubitz, M., & Dignat-George, F. (2006). Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: Proposal of a definition and a consensus protocol. Journal of Thrombosis and Haemostasis: JTH, 4(3), 671–677. https://doi.org/10.1111/j.1538-7836.2006.01794.x
[DOI: 10.1111/j.1538-7836.2006.01794.x]
Smadja, D. M., Gaussem, P., Mauge, L., Israël-Biet, D., Dignat-George, F., Peyrard, S., & Lévy, M. (2009). Circulating endothelial cells: A new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease. Circulation, 119(3), 374–381. https://doi.org/10.1161/CIRCULATIONAHA.108.808246
[DOI: 10.1161/CIRCULATIONAHA.108.808246]
Smadja, D. M., Mauge, L., Sanchez, O., Silvestre, J. S., Guerin, C., Godier, A., & Israël-Biet, D. (2010). Distinct patterns of circulating endothelial cells in pulmonary hypertension. The European Respiratory Journal, 36(6), 1284–1293. https://doi.org/10.1183/09031936.00130809
[DOI: 10.1183/09031936.00130809]
Smadja, D. M., Mauge, L., Nunes, H., d’Audigier, C., Juvin, K., Borie, R., & Israel-Biet, D. (2013). Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis, 16(1), 147–157. https://doi.org/10.1007/s10456-012-9306-9
[DOI: 10.1007/s10456-012-9306-9]
Smadja, D. M., Günther, S., Cavagna, P., Renaud, B., Salmon, D., Hermann, B., & Philippe, A. (2025). Circulating endothelial cells: A key biomarker of persistent fatigue after hospitalization for COVID-19. Angiogenesis, 28(1), 8. https://doi.org/10.1007/s10456-024-09959-z
[DOI: 10.1007/s10456-024-09959-z]
Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., & Dignat-George, F. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thrombosis and Haemostasis, 93(2), 228–235. https://doi.org/10.1160/TH04-09-0578
[DOI: 10.1160/TH04-09-0578]
Bruzelius, M., Iglesias, M. J., Hong, M. G., Sanchez-Rivera, L., Gyorgy, B., Souto, J. C., & Odeberg, J. (2016). PDGFB, a new candidate plasma biomarker for venous thromboembolism: Results from the VEREMA affinity proteomics study. Blood, 128(23), e59–e66. https://doi.org/10.1182/blood-2016-05-711846
[DOI: 10.1182/blood-2016-05-711846]
Qanadli, S. D., El Hajjam, M., Vieillard-Baron, A., Joseph, T., Mesurolle, B., Oliva, V. L., & Lacombe, P. (2001). New CT index to quantify arterial obstruction in pulmonary embolism: Comparison with angiographic index and echocardiography. AJR American Journal of Roentgenology, 176(6), 1415–1420. https://doi.org/10.2214/ajr.176.6.1761415
[DOI: 10.2214/ajr.176.6.1761415]
Meyer, G., Collignon, M. A., Guinet, F., Jeffrey, A. A., Barritault, L., & Sors, H. (1990). Comparison of perfusion lung scanning and angiography in the estimation of vascular obstruction in acute pulmonary embolism. European Journal of Nuclear Medicine, 17(6–8), 315–319.
[DOI: 10.1007/BF01268022]
PIOPED Investigators. (1990). Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). Journal of the American Medical Association, 263(20), 2753–2759. https://doi.org/10.1001/jama.1990.03440200057023
[DOI: 10.1001/jama.1990.03440200057023]
Kearon, C., Ageno, W., Cannegieter, S. C., Cosmi, B., Geersing, G. J., & Kyrle, P. A. & Subcommittees on control of anticoagulation, and predictive and diagnostic variables in thrombotic disease. (2016). Categorization of patients as having provoked or unprovoked venous thromboembolism: Guidance from the SSC of ISTH. Journal of Thrombosis and Haemostasis: JTH, 14(7), 1480–1483. https://doi.org/10.1111/jth.13336
Smadja, D. M. (2019). Vasculogenic stem and progenitor cells in human: Future cell therapy product or liquid biopsy for vascular disease. Advances in Experimental Medicine and Biology, 1201, 215–237. https://doi.org/10.1007/978-3-030-31206-0_11
[DOI: 10.1007/978-3-030-31206-0_11]
Fadini, G. P., de Kreutzenberg, S., Agostini, C., Boscaro, E., Tiengo, A., Dimmeler, S., & Avogaro, A. (2009). Low CD34 + cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis, 207(1), 213–219. https://doi.org/10.1016/j.atherosclerosis.2009.03.040
[DOI: 10.1016/j.atherosclerosis.2009.03.040]
Patel, R. S., Li, Q., Ghasemzadeh, N., Eapen, D. J., Moss, L. D., Janjua, A. U., & Quyyumi, A. A. (2015). Circulating CD34 + progenitor cells and risk of mortality in a population with coronary artery disease. Circulation Research, 116(2), 289–297. https://doi.org/10.1161/CIRCRESAHA.116.304187
[DOI: 10.1161/CIRCRESAHA.116.304187]
Bonora, B. M., Marassi, M., Fogar, P., Zuin, J., Cappellari, R., Marinello, S., & Fadini, G. P. (2024). Circulating haematopoietic stem cells and long-term outcomes of COVID-19. European Journal of Clinical Investigation, 54(4), e14150. https://doi.org/10.1111/eci.14150
[DOI: 10.1111/eci.14150]
Smadja, D. M., Mentzer, S. J., Fontenay, M., Laffan, M. A., Ackermann, M., Helms, J., & Griffioen, A. W. (2021). COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis, 24(4), 755–788. https://doi.org/10.1007/s10456-021-09805-6
[DOI: 10.1007/s10456-021-09805-6]
Aries, A., Zanetti, C., Hénon, P., Drénou, B., & Lahlil, R. (2023). Deciphering the cardiovascular potential of human CD34 + Stem cells. International Journal of Molecular Sciences, 24(11), 9551. https://doi.org/10.3390/ijms24119551
[DOI: 10.3390/ijms24119551]
Blandinières, A., Gendron, N., Bacha, N., Bièche, I., Chocron, R., Nunes, H., & Smadja, D. M. (2019). Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis, 22(2), 325–339. https://doi.org/10.1007/s10456-018-09659-5
[DOI: 10.1007/s10456-018-09659-5]
Billoir, P., Blandinières, A., Gendron, N., Chocron, R., Gunther, S., Philippe, A., & Smadja, D. M. (2021). Endothelial colony-forming cells from idiopathic pulmonary fibrosis patients have a high procoagulant potential. Stem Cell Reviews and Reports, 17(2), 694–699. https://doi.org/10.1007/s12015-020-10043-4
[DOI: 10.1007/s12015-020-10043-4]
Yao, W., Firth, A. L., Sacks, R. S., Ogawa, A., Auger, W. R., Fedullo, P. F., & Yuan, J. X. J. (2009). Identification of putative endothelial progenitor cells (CD34 + CD133 + Flk-1+) in endarterectomized tissue of patients with chronic thromboembolic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 296(6), L870–L878. https://doi.org/10.1152/ajplung.90413.2008
[DOI: 10.1152/ajplung.90413.2008]
Alvarez, D. F., Huang, L., King, J. A., ElZarrad, M. K., Yoder, M. C., & Stevens, T. (2008). Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. American Journal of Physiology Lung Cellular and Molecular Physiology, 294(3), L419–430. https://doi.org/10.1152/ajplung.00314.2007
[DOI: 10.1152/ajplung.00314.2007]
Paschalaki, K. E., & Randi, A. M. (2018). Recent advances in endothelial colony forming cells toward their use in clinical translation. Frontiers in Medicine, 5, 295. https://doi.org/10.3389/fmed.2018.00295
[DOI: 10.3389/fmed.2018.00295]
Fadini, G. P., Albiero, M., Seeger, F., Poncina, N., Menegazzo, L., Angelini, A., & Avogaro, A. (2013). Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Research in Cardiology, 108(1), 313. https://doi.org/10.1007/s00395-012-0313-1
[DOI: 10.1007/s00395-012-0313-1]
Paschalaki, K. E., Starke, R. D., Hu, Y., Mercado, N., Margariti, A., Gorgoulis, V. G., & Barnes, P. J. (2013). Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells (Dayton Ohio), 31(12), 2813–2826. https://doi.org/10.1002/stem.1488
[DOI: 10.1002/stem.1488]
Vassallo, P. F., Simoncini, S., Ligi, I., Chateau, A. L., Bachelier, R., Robert, S., & Sabatier, F. (2014). Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood, 123(13), 2116–2126. https://doi.org/10.1182/blood-2013-02-484956
[DOI: 10.1182/blood-2013-02-484956]
Simoncini, S., Chateau, A. L., Robert, S., Todorova, D., Yzydorzick, C., Lacroix, R., & Sabatier, F. (2017). Biogenesis of pro-senescent microparticles by endothelial colony forming cells from premature neonates is driven by SIRT1-Dependent epigenetic regulation of MKK6. Scientific Reports, 7(1), 8277. https://doi.org/10.1038/s41598-017-08883-1
[DOI: 10.1038/s41598-017-08883-1]
Simoncini, S., Toupance, S., Labat, C., Gautier, S., Dumoulin, C., Arnaud, L., & Sabatier, F. (2022). Functional impairment of endothelial colony forming cells (ECFC) in patients with severe atherosclerotic cardiovascular disease (ASCVD). International Journal of Molecular Sciences, 23(16), 8969. https://doi.org/10.3390/ijms23168969
[DOI: 10.3390/ijms23168969]
Hernandez-Lopez, R., Chavez-Gonzalez, A., Torres-Barrera, P., Moreno-Lorenzana, D., Lopez-DiazGuerrero, N., Santiago-German, D., & Alvarado-Moreno, J. A. (2017). Reduced proliferation of endothelial colony-forming cells in unprovoked venous thromboembolic disease as a consequence of endothelial dysfunction. PloS One, 12(9), e0183827. https://doi.org/10.1371/journal.pone.0183827
[DOI: 10.1371/journal.pone.0183827]
Smadja, D. M., Basire, A., Amelot, A., Conte, A., Bièche, I., Le Bonniec, B. F., & Gaussem, P. (2008). Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 12(3), 975–986. https://doi.org/10.1111/j.1582-4934.2008.00161.x
[DOI: 10.1111/j.1582-4934.2008.00161.x]
Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., & Smadja, D. M. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094. https://doi.org/10.1160/TH14-09-0748
[DOI: 10.1160/TH14-09-0748]
Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J. S., & Smadja, D. M. (2017). Human very small Embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Reviews and Reports, 13(4), 552–560. https://doi.org/10.1007/s12015-017-9731-7
[DOI: 10.1007/s12015-017-9731-7]
Quarck, R., Wynants, M., Verbeken, E., Meyns, B., & Delcroix, M. (2015). Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. The European Respiratory Journal, 46(2), 431–443. https://doi.org/10.1183/09031936.00009914
[DOI: 10.1183/09031936.00009914]
Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (1996). The ISHAGE guidelines for CD34 + Cell determination by flow cytometry. Journal of Hematotherapy, 5(3), 213–226. https://doi.org/10.1089/scd.1.1996.5.213
[DOI: 10.1089/scd.1.1996.5.213]
Grants
Leg poix/Chancellerie des Universités de Paris
Fonds de dotation pour la Recherche en Santé Respiratoire/Fonds de dotation pour la Recherche en Santé Respiratoire