Endothelial TDP-43 depletion disrupts core blood-brain barrier pathways in neurodegeneration.
Omar M F Omar, Amy L Kimble, Ashok Cheemala, Jordan D Tyburski, Swati Pandey, Qian Wu, Bo Reese, Evan R Jellison, Bing Hao, Yunfeng Li, Riqiang Yan, Patrick A Murphy
Author Information
Omar M F Omar: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA. ORCID
Amy L Kimble: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA. ORCID
Ashok Cheemala: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA.
Jordan D Tyburski: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA. ORCID
Swati Pandey: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA.
Qian Wu: Department of Pathology, University of Connecticut Medical School, Farmington, CT, USA.
Bo Reese: Center for Genome Innovation, University of Connecticut, Storrs, CT, USA.
Evan R Jellison: Department of Immunology, University of Connecticut Medical School, Farmington, CT, USA. ORCID
Bing Hao: Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA.
Yunfeng Li: Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA.
Riqiang Yan: Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA.
Patrick A Murphy: Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA. pamurphy@uchc.edu. ORCID
Endothelial cells (ECs) help maintain the blood-brain barrier but deteriorate in many neurodegenerative disorders. Here we show, using a specialized method to isolate EC and microglial nuclei from postmortem human cortex (92 donors, 50 male and 42 female, aged 20-98 years), that intranuclear cellular indexing of transcriptomes and epitopes enables simultaneous profiling of nuclear proteins and RNA transcripts at a single-nucleus resolution. We identify a disease-associated subset of capillary ECs in Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal degeneration. These capillaries exhibit reduced nuclear ��-catenin and ��-catenin-downstream genes, along with elevated TNF/NF-��B markers. Notably, these transcriptional changes correlate with the loss of nuclear TDP-43, an RNA-binding protein also depleted in neuronal nuclei. TDP-43 disruption in human and mouse ECs replicates these alterations, suggesting that TDP-43 deficiency in ECs is an important factor contributing to blood-brain barrier breakdown in neurodegenerative diseases.
References
Daneman, R. & Prat, A. The blood���brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).
[PMID: 25561720]
Hafezi-Moghadam, A., Thomas, K. L. & Wagner, D. D. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am. J. Physiol. Cell Physiol. 292, C1256���C1262 (2007).
[PMID: 16870825]
Montagne, A. et al. Blood���brain barrier breakdown in the aging human hippocampus. Neuron 85, 296���302 (2015).
[PMID: 25611508]
Yang, A. C. et al. Physiological blood���brain transport is impaired with age by a shift in transcytosis. Nature 583, 425���430 (2020).
[PMID: 32612231]
Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood���brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21���78 (2019).
[PMID: 30280653]
Nation, D. A. et al. Blood���brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270���276 (2019).
[PMID: 30643288]
Montagne, A. et al. APOE4 leads to blood���brain barrier dysfunction predicting cognitive decline. Nature 581, 71���76 (2020).
[PMID: 32376954]
Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood���brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133���150 (2018).
[PMID: 29377008]
Miyazaki, K. et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 89, 718���728 (2011).
[PMID: 21337372]
Winkler, E. A. et al. Blood���spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 111���120 (2013).
[PMID: 22941226]
Toledo, J. B. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer���s Coordinating Centre. Brain 136, 2697���2706 (2013).
[PMID: 23842566]
Nguyen, H. P., Van Broeckhoven, C. & van der Zee, J. ALS genes in the genomic era and their implications for FTD. Trends Genet. TIG 34, 404���423 (2018).
[PMID: 29605155]
Tom��, S. O. et al. Distinct molecular patterns of TDP-43 pathology in Alzheimer���s disease: relationship with clinical phenotypes. Acta Neuropathol. Commun. 8, 61 (2020).
[PMID: 32349792]
Peng, A. Y. T. et al. Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc. Natl Acad. Sci. USA 117, 29101���29112 (2020).
[PMID: 33127758]
Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc. Natl Acad. Sci. USA 110, 4697���4702 (2013).
[PMID: 23401527]
Araki, K. et al. TDP-43 regulates early-phase insulin secretion via CaV1.2-mediated exocytosis in islets. J. Clin. Invest. 130, 3578���3593 (2019).
Sabatelli, M. et al. Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations. Neurobiol. Aging 36, 2005 e5���2005 e13 (2015).
[PMID: 25792239]
Kimble, A. L. et al. A method for rapid flow-cytometric isolation of endothelial nuclei and RNA from archived frozen brain tissue. Lab. Investig. J. Tech. Methods Pathol. 102, 204���211 (2022).
Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204���1212 (2021).
[PMID: 34608310]
Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547���553 (2022).
[PMID: 35501385]
Wang, W.-L. et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod. Pathol. 25, 1378���1383 (2012).
[PMID: 22766791]
Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer���s disease. Nat. Neurosci. 26, 970���982 (2023).
[PMID: 37264161]
Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer���s risk. Nature 603, 885���892 (2022).
[PMID: 35165441]
Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073���1081 (2018).
[PMID: 29775591]
Ransohoff, R. M. & El Khoury, J. Microglia in health and disease. Cold Spring Harb. Perspect. Biol. 8, a020560 (2015).
[PMID: 26354893]
Prater, K. E. et al. Human microglia show unique transcriptional changes in Alzheimer���s disease. Nat. Aging 3, 894���907 (2023).
[PMID: 37248328]
Wang, C. et al. Microglial NF-��B drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13, 1969 (2022).
[PMID: 35413950]
Krabbe, G. et al. Microglial NF��B-TNF�� hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc. Natl Acad. Sci. USA 114, 5029���5034 (2017).
[PMID: 28438992]
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer���s disease. Cell 169, 1276���1290.e17 (2017).
[PMID: 28602351]
Terai, K., Matsuo, A. & McGeer, P. L. Enhancement of immunoreactivity for NF-��B in the hippocampal formation and cerebral cortex of Alzheimer���s disease. Brain Res. 735, 159���168 (1996).
[PMID: 8905182]
Streit, W. J., Khoshbouei, H. & Bechmann, I. Dystrophic microglia in late-onset Alzheimer���s disease. Glia 68, 845���854 (2020).
[PMID: 31922322]
Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458���3483 (2022).
[PMID: 36327895]
Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228���239 (2018).
[PMID: 29311743]
Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418���4432.e4 (2020).
[PMID: 32234477]
Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21, 1318 (2018).
[PMID: 30250261]
Sweeney, M. D. et al. Vascular dysfunction ��� the disregarded partner of Alzheimer���s disease. Alzheimers Dement. 15, 158���167 (2019).
[PMID: 30642436]
Jeong, H.-W. et al. Single-cell transcriptomics reveals functionally specialized vascular endothelium in brain. eLife 11, e57520 (2022).
[PMID: 36197007]
Castellano, J. M. et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood A�� clearance in a mouse model of ��-amyloidosis. Proc. Natl Acad. Sci. USA 109, 15502���15507 (2012).
[PMID: 22927427]
Tugues, S. et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-��1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J. Biol. Chem. 288, 19060���19071 (2013).
[PMID: 23632027]
Tsuji-Tamura, K., Morino-Koga, S., Suzuki, S. & Ogawa, M. The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis. J. Cell Sci. 134, jcs254920 (2021).
[PMID: 34338296]
Cheemala, A. et al. Loss of endothelial TDP-43 leads to blood���brain barrier defects in mouse models of amyotrophic lateral sclerosis and frontotemporal dementia. Preprint at BioRxiv https://doi.org/10.1101/2023.12.13.571184 (2023).
Arribas, V. et al. Endothelial TDP-43 controls sprouting angiogenesis and vascular barrier integrity, and its deletion triggers neuroinflammation. JCI Insight 9, e177819 (2024).
[PMID: 38300714]
Prudencio, M. et al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proc. Natl Acad. Sci. USA 109, 21510���21515 (2012).
[PMID: 23236149]
Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803���815 (2007).
[PMID: 17893694]
Ward, C., Schlingmann, B., Stecenko, A. A., Guidot, D. M. & Koval, M. NF-��B inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers 3, e982424 (2015).
[PMID: 25838984]
Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557���561 (2007).
[PMID: 17361131]
Ridder, D. A. et al. TAK1 in brain endothelial cells mediates fever and lethargy. J. Exp. Med. 208, 2615���2623 (2011).
[PMID: 22143887]
Ridder, D. A. et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J. Exp. Med. 212, 1529���1549 (2015).
[PMID: 26347470]
Kielland, A. et al. NF-��B activity in perinatal brain during infectious and hypoxic-ischemic insults revealed by a reporter mouse. Brain Pathol. Zurich Switz. 22, 499���510 (2012).
Aghaizu, N. D., Jin, H. & Whiting, P. J. Dysregulated Wnt signalling in the Alzheimer���s brain. Brain Sci. 10, 902 (2020).
[PMID: 33255414]
Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S. & Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 126, 821���828 (2016).
[PMID: 26928035]
Gimbrone, M. A. & Garcia-Cardena, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620���636 (2016).
[PMID: 26892962]
Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat. Rev. Cardiol. 20, 738���753 (2023).
[PMID: 37225873]
Partridge, J. et al. Laminar shear stress acts as a switch to regulate divergent functions of NF-��B in endothelial cells. FASEB J. 21, 3553���3561 (2007).
[PMID: 17557931]
Faley, S. L. et al. iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Rep. 12, 474���487 (2019).
Takeshita, Y. et al. An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J. Neurosci. Methods 232, 165���172 (2014).
[PMID: 24858797]
van Buggenum, J. A. G. L. et al. A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via immuno-PCR. Sci. Rep. 6, 22675 (2016).
[PMID: 26947912]
Satija, R. CITE-seq hyper antibody-oligo conjugation. https://citeseq.files.wordpress.com/2019/03/cite-seq_hyper_conjugation_190321.pdf
Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793���798 (2020).
[PMID: 32719530]
Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907 (2019).
[PMID: 31266958]
Zhu, Q., Conrad, D. N. & Gartner, Z. J. deMULTIplex2: robust sample demultiplexing for scRNA-seq. Genome Biol. 25, 7 (2024).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
[PMID: 29409532]
Muzellec, B., Tele��czuk, M., Cabeli, V. & Andreux, M. PyDESeq2: a Python package for bulk RNA-seq differential expression analysis. Bioinformatics 39, btad547 (2023).
[PMID: 37669147]
Chung, H. et al. klarman-cell-observatory. GitHub https://github.com/klarman-cell-observatory/inCITE-seq (2021).
Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452���458 (2011).
[PMID: 21358640]
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).
[PMID: 29295995]
Gastfriend, B. D. et al. Wnt signaling mediates acquisition of blood-brain barrier properties in na��ve endothelium derived from human pluripotent stem cells. eLife 10, e70992 (2021).
[PMID: 34755601]
pamurphyUCONN. pamurphyUCONN/2024_Omar: JupyterNotebooks to support 2024_Omar (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.14679104 (2025).
Murphy, P. Batch count files from Cellranger, Metadata, and Annotated Capillary and Microglia data (h5ad), and pTau Western Blot data to support Omar et al. 2025 (v1.0.0) [Data set]. Zenodo https://doi.org/10.5281/zenodo.14712707 (2025).
Murphy, P. All cell data (h5ad) to support Omar et al. 2025 (v.1.0.0) [Data set]. Zenodo https://zenodo.org/records/14712288 (2025).
Grants
19IPLOI34770151/American Heart Association (American Heart Association, Inc.)
23PRE1027078/American Heart Association (American Heart Association, Inc.)
R00-HL125727/U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
RF1-NS117449/U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
NS074256/U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
GM135592/U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
AG046929/U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)