Early warning of complex climate risk with integrated artificial intelligence.

Markus Reichstein, Vitus Benson, Jan Blunk, Gustau Camps-Valls, Felix Creutzig, Carina J Fearnley, Boran Han, Kai Kornhuber, Nasim Rahaman, Bernhard Sch��lkopf, Jos�� Mar��a T��rraga, Ricardo Vinuesa, Karen Dall, Joachim Denzler, Dorothea Frank, Giulia Martini, Naomi Nganga, Danielle C Maddix, Kommy Weldemariam
Author Information
  1. Markus Reichstein: Amazon Web Services, Seattle and Santa Clara, WA and CA, USA. mreichstein@bgc-jena.mpg.de. ORCID
  2. Vitus Benson: ELLIS Unit Jena, Jena, Germany. ORCID
  3. Jan Blunk: University of Jena, Jena, Germany. ORCID
  4. Gustau Camps-Valls: University of Valencia, Valencia, Spain. ORCID
  5. Felix Creutzig: Potsdam Institute for Climate Impact Research, Potsdam and Berlin, Germany. ORCID
  6. Carina J Fearnley: University College London, London, UK. ORCID
  7. Boran Han: Amazon Web Services, Seattle and Santa Clara, WA and CA, USA. ORCID
  8. Kai Kornhuber: Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA. ORCID
  9. Nasim Rahaman: Max-Planck-Institute for Intelligent Systems, T��bingen, Germany.
  10. Bernhard Sch��lkopf: Max-Planck-Institute for Intelligent Systems, T��bingen, Germany. ORCID
  11. Jos�� Mar��a T��rraga: University of Valencia, Valencia, Spain. ORCID
  12. Ricardo Vinuesa: KTH Royal Institute of Technology, Stockholm, Sweden. ORCID
  13. Karen Dall: German Red Cross, Berlin, Germany.
  14. Joachim Denzler: ELLIS Unit Jena, Jena, Germany. ORCID
  15. Dorothea Frank: Max-Planck-Institute for Biogeochemistry, Jena, Germany.
  16. Giulia Martini: World Food Program, Rome, Italy. ORCID
  17. Naomi Nganga: Kenya Red Cross, Nairobi, Kenya.
  18. Danielle C Maddix: Amazon Web Services, Seattle and Santa Clara, WA and CA, USA.
  19. Kommy Weldemariam: Amazon Web Services, Seattle and Santa Clara, WA and CA, USA.

Abstract

As climate change accelerates, human societies face growing exposure to disasters and stress, highlighting the urgent need for effective early warning systems (EWS). These systems monitor, assess, and communicate risks to support resilience and sustainable development, but challenges remain in hazard forecasting, risk communication, and decision-making. This perspective explores the transformative potential of integrated Artificial Intelligence (AI) modeling. We highlight the role of AI in developing multi-hazard EWSs that integrate Meteorological and Geospatial foundation models (FMs) for impact prediction. A user-centric approach with intuitive interfaces and community feedback is emphasized to improve crisis management. To address climate risk complexity, we advocate for causal AI models to avoid spurious predictions and stress the need for responsible AI practices. We highlight the FATES (Fairness, Accountability, Transparency, Ethics, and Sustainability) principles as essential for equitable and trustworthy AI-based Early Warning Systems for all. We further advocate for decadal EWSs, leveraging climate ensembles and generative methods to enable long-term, spatially resolved forecasts for proactive climate adaptation.

References

  1. Sci Rep. 2023 Mar 16;13(1):2793 [PMID: 36928341]
  2. Patterns (N Y). 2023 Jun 9;4(6):100739 [PMID: 37304758]
  3. Nat Commun. 2023 Dec 4;14(1):8004 [PMID: 38049446]
  4. Prog Disaster Sci. 2020 Dec;8:100139 [PMID: 34977532]
  5. Nature. 2024 Aug;632(8027):1060-1066 [PMID: 39039241]
  6. Sci Data. 2023 Jan 31;10(1):61 [PMID: 36717577]
  7. Nature. 2021 Sep;597(7878):672-677 [PMID: 34588668]
  8. Nat Food. 2022 Sep;3(9):716-728 [PMID: 37118143]
  9. Nature. 2024 Mar;627(8004):559-563 [PMID: 38509278]
  10. Nature. 2015 Sep 3;525(7567):47-55 [PMID: 26333465]
  11. Nat Commun. 2023 Oct 17;14(1):6544 [PMID: 37848427]
  12. Risk Anal. 2024 Jun;44(6):1498-1513 [PMID: 37939398]
  13. Nature. 2023 Oct;622(7981):87-92 [PMID: 37794266]
  14. Jamba. 2016 Apr 19;8(1):206 [PMID: 29955285]
  15. Nature. 2023 Jul;619(7970):526-532 [PMID: 37407824]
  16. Nature. 2019 Sep;573(7775):568-572 [PMID: 31534218]
  17. Fertil Steril. 2018 Jun;109(6):952-963 [PMID: 29935653]
  18. Sci Data. 2017 Jan 31;4:170001 [PMID: 28140386]
  19. Science. 2023 Dec 22;382(6677):1416-1421 [PMID: 37962497]
  20. Nature. 2019 Feb;566(7743):195-204 [PMID: 30760912]
  21. Nature. 2023 Jul;619(7970):533-538 [PMID: 37407823]
  22. Nat Commun. 2022 Sep 1;13(1):5145 [PMID: 36050311]
  23. Nat Commun. 2022 Apr 22;13(1):2208 [PMID: 35459230]
  24. Nat Commun. 2019 Jun 14;10(1):2553 [PMID: 31201306]
  25. IEEE Comput Graph Appl. 2021 Jan-Feb;41(1):8-14 [PMID: 33444127]

Grants

  1. 855187/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

Word Cloud

Created with Highcharts 10.0.0climateAIriskstressneedwarningsystemsintegratedhighlightEWSsmodelsadvocateEarlychangeaccelerateshumansocietiesfacegrowingexposuredisastershighlightingurgenteffectiveearlyEWSmonitorassesscommunicateriskssupportresiliencesustainabledevelopmentchallengesremainhazardforecastingcommunicationdecision-makingperspectiveexplorestransformativepotentialArtificialIntelligencemodelingroledevelopingmulti-hazardintegrateMeteorologicalGeospatialfoundationFMsimpactpredictionuser-centricapproachintuitiveinterfacescommunityfeedbackemphasizedimprovecrisismanagementaddresscomplexitycausalavoidspuriouspredictionsresponsiblepracticesFATESFairnessAccountabilityTransparencyEthicsSustainabilityprinciplesessentialequitabletrustworthyAI-basedWarningSystemsdecadalleveragingensemblesgenerativemethodsenablelong-termspatiallyresolvedforecastsproactiveadaptationcomplexartificialintelligence

Similar Articles

Cited By

No available data.