Chronic administration of ivabradine improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy.

Jessica Marksteiner, Christopher Dostal, Janine Ebner, Petra Lujza Szabó, Bruno K Podesser, Simge Baydar, Ana I A Goncalves, Anja Wagner, Klaus Kratochwill, Petra Fichtinger, Dietmar Abraham, Isabella Salzer, Helmut Kubista, Elena Lilliu, Benjamin Hackl, Jakob Sauer, Hannes Todt, Xaver Koenig, Karlheinz Hilber, Attila Kiss
Author Information
  1. Jessica Marksteiner: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  2. Christopher Dostal: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.
  3. Janine Ebner: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  4. Petra Lujza Szabó: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.
  5. Bruno K Podesser: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.
  6. Simge Baydar: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.
  7. Ana I A Goncalves: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.
  8. Anja Wagner: Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria.
  9. Klaus Kratochwill: Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria.
  10. Petra Fichtinger: Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.
  11. Dietmar Abraham: Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.
  12. Isabella Salzer: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  13. Helmut Kubista: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  14. Elena Lilliu: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  15. Benjamin Hackl: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  16. Jakob Sauer: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  17. Hannes Todt: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  18. Xaver Koenig: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
  19. Karlheinz Hilber: Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria. karlheinz.hilber@meduniwien.ac.at.
  20. Attila Kiss: Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria.

Abstract

Duchenne muscular dystrophy (DMD), a severe muscle disease caused by mutations in the gene encoding for the intracellular protein dystrophin, is associated with impaired cardiac function and arrhythmias. A causative factor for complications in the dystrophic heart is abnormal calcium (Ca) handling in ventricular cardiomyocytes, and restoration of normal Ca homeostasis has emerged as therapeutic strategy. Here, we used a rodent model of DMD, the dystrophin-deficient DMD rat, to test the following hypothesis: chronic administration of ivabradine (IVA), a drug clinically approved for the treatment of heart failure, improves Ca handling in dystrophic ventricular cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Intracellular Ca measurements revealed that 4-months administration of IVA to DMD rats significantly improves Ca handling properties in dystrophic ventricular cardiomyocytes. In particular, IVA treatment increased electrically-evoked Ca transients and speeded their decay. This suggested enhanced sarcoplasmic reticulum Ca release and faster removal of Ca from the cytosol. Chronic IVA administration also enhanced the sarcoplasmic reticulum Ca load. Transthoracic echocardiography revealed a significant improvement of cardiac systolic function in IVA-treated DMD rats. Thus, left ventricular ejection fraction and fractional shortening were enhanced, and end-systolic as well as end-diastolic diameters were diminished by the drug. Finally, chronic IVA administration neither significantly attenuated cardiac fibrosis and apoptosis, nor was vascular function improved by the drug. Collectively our findings suggest that long-term IVA administration enhances contractile function in the dystrophic heart by improvement of Ca handling in ventricular cardiomyocytes. Chronic IVA administration may be beneficial for DMD patients.

Keywords

References

  1. Circulation. 1992 Mar;85(3):1046-55 [PMID: 1311223]
  2. Exp Anim. 2024 May 3;73(2):145-153 [PMID: 37914289]
  3. Cardiovasc Res. 2017 Dec 01;113(14):1743-1752 [PMID: 29016722]
  4. Am J Physiol. 1996 Mar;270(3 Pt 2):H1091-100 [PMID: 8780208]
  5. Int J Mol Sci. 2023 May 09;24(10): [PMID: 37239853]
  6. J Am Coll Cardiol. 2016 May 31;67(21):2533-46 [PMID: 27230049]
  7. Int Heart J. 2024;65(2):211-217 [PMID: 38556332]
  8. Cardiovasc Res. 2013 Feb 1;97(2):230-9 [PMID: 23079200]
  9. Nat Commun. 2017 Oct 20;8(1):1068 [PMID: 29051551]
  10. Eur Heart J. 2010 Jun;31(12):1529-37 [PMID: 20028694]
  11. Circulation. 2004 Apr 6;109(13):1674-9 [PMID: 14981003]
  12. Biochem Biophys Res Commun. 2004 Oct 1;322(4):1171-7 [PMID: 15336965]
  13. Drug Des Devel Ther. 2014 Jun 03;8:689-700 [PMID: 24940047]
  14. Int J Cardiol. 2019 Jun 15;285:72-79 [PMID: 30904281]
  15. JAMA Cardiol. 2017 Feb 1;2(2):190-199 [PMID: 27926769]
  16. J Hypertens. 2019 May;37(5):1023-1031 [PMID: 30672832]
  17. Biochem Biophys Res Commun. 2019 Nov 26;520(1):179-185 [PMID: 31585729]
  18. J Muscle Res Cell Motil. 2003;24(4-6):275-83 [PMID: 14620741]
  19. Ther Adv Drug Saf. 2011 Feb;2(1):19-28 [PMID: 25083199]
  20. Circulation. 2008 May 6;117(18):2377-87 [PMID: 18443241]
  21. PLoS One. 2014 Oct 13;9(10):e110371 [PMID: 25310701]
  22. Eur Heart J. 2013 Sep;34(36):2839-49 [PMID: 22833515]
  23. Br J Pharmacol. 2012 Mar;165(5):1457-66 [PMID: 21838751]
  24. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H846-55 [PMID: 17012353]
  25. Dis Model Mech. 2021 Feb 22;14(2): [PMID: 33619211]
  26. Am J Physiol Heart Circ Physiol. 2014 Sep 1;307(5):H710-21 [PMID: 25015966]
  27. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1559-64 [PMID: 20080623]
  28. FASEB J. 2002 Apr;16(6):622-4 [PMID: 11919174]
  29. Physiol Rep. 2018 Jan;6(1): [PMID: 29333726]
  30. Stem Cell Res. 2014 Mar;12(2):467-80 [PMID: 24434629]
  31. Cardiovasc Res. 2005 Mar 1;65(4):793-802 [PMID: 15721859]
  32. Int J Cardiol. 2017 Jun 1;236:107-112 [PMID: 28256323]
  33. Physiol Rep. 2023 Apr;11(7):e15664 [PMID: 37032434]
  34. Adv Exp Med Biol. 2018;1067:373-385 [PMID: 28956314]
  35. Int J Cardiol. 2016 Nov 15;223:286-288 [PMID: 27541675]
  36. Int J Cardiol. 2019 Apr 1;280:99-103 [PMID: 30686494]
  37. Front Biosci. 2001 Jan 01;6:D1-D11 [PMID: 11145918]
  38. J Clin Med. 2020 Feb 14;9(2): [PMID: 32075145]
  39. J Cell Sci. 1995 Jun;108 ( Pt 6):2197-204 [PMID: 7673339]
  40. Front Cardiovasc Med. 2023 Oct 17;10:1149351 [PMID: 37915740]
  41. J Am Coll Cardiol. 2017 Oct 3;70(14):1777-1784 [PMID: 28958335]
  42. PLoS One. 2011;6(5):e20300 [PMID: 21677768]
  43. J Cell Mol Med. 2021 Apr;25(8):3922-3934 [PMID: 33619882]
  44. Br J Pharmacol. 2015 Sep;172(17):4380-90 [PMID: 26076181]
  45. Herz. 2012 Sep;37(6):702-5 [PMID: 22718185]
  46. Circulation. 1995 Sep 1;92(5):1169-78 [PMID: 7648662]

Grants

  1. P35542-B/Austrian Science Fund
  2. AP00957OFF/Österreichische Muskelforschung
  3. LBI-CARREM 2019-24/Ludwig Boltzmann Cardiovascular Institute

MeSH Term

Animals
Muscular Dystrophy, Duchenne
Ivabradine
Myocytes, Cardiac
Rats
Disease Models, Animal
Calcium
Male
Sarcoplasmic Reticulum
Dystrophin
Myocardial Contraction

Chemicals

Ivabradine
Calcium
Dystrophin

Word Cloud

Created with Highcharts 10.0.0CaadministrationIVADMDfunctionhandlingdystrophicventricularcardiacheartcardiomyocytesDuchennemusculardystrophydrugtreatmentimprovesratsenhancedChroniccalciummodelratchronicivabradineenhancescontractilerevealedsignificantlysarcoplasmicreticulumimprovementseveremusclediseasecausedmutationsgeneencodingintracellularproteindystrophinassociatedimpairedarrhythmiascausativefactorcomplicationsabnormalrestorationnormalhomeostasisemergedtherapeuticstrategyusedrodentdystrophin-deficienttestfollowinghypothesis:clinicallyapprovedfailuretherebyperformanceIntracellularmeasurements4-monthspropertiesparticularincreasedelectrically-evokedtransientsspeededdecaysuggestedreleasefasterremovalcytosolalsoloadTransthoracicechocardiographysignificantsystolicIVA-treatedThusleftejectionfractionfractionalshorteningend-systolicwellend-diastolicdiametersdiminishedFinallyneitherattenuatedfibrosisapoptosisvascularimprovedCollectivelyfindingssuggestlong-termmaybeneficialpatientsCardiacCardiomyocyteDystrophicIvabradine

Similar Articles

Cited By