Decentralized learning for medical image classification with prototypical contrastive network.

Zhantao Cao, Yuanbing Shi, Shuli Zhang, Huanan Chen, Weide Liu, Guanghui Yue, Huazhen Lin
Author Information
  1. Zhantao Cao: Institutions for Research, CETC Cyberspace Security Technology CO., LTD., Chengdu, China.
  2. Yuanbing Shi: Institutions for Research, CETC Cyberspace Security Technology CO., LTD., Chengdu, China.
  3. Shuli Zhang: Institutions for Research, CETC Cyberspace Security Technology CO., LTD., Chengdu, China.
  4. Huanan Chen: Institutions for Research, CETC Cyberspace Security Technology CO., LTD., Chengdu, China.
  5. Weide Liu: Institute for Infocomm Research, A*STAR, Singapore, Singapore.
  6. Guanghui Yue: School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  7. Huazhen Lin: Center of Statistical Research and School of Statistics, Southwestern University of Finance and Economics, Chengdu, China.

Abstract

BACKGROUND: Recently, deep convolutional neural networks (CNNs) have shown great potential in medical image classification tasks. However, the practical usage of the methods is constrained by two challenges: 1) the challenge of using nonindependent and identically distributed (non-IID) datasets from various medical institutions while ensuring privacy, and 2) the data imbalance problem due to the frequency of different diseases.
PURPOSE: The objective of this paper is to present a novel approach for addressing these challenges through a decentralized learning method using a prototypical contrastive network to achieve precise medical image classification while mitigating the non-IID problem across different clients.
METHODS: We propose a prototype contrastive network that minimizes disparities among heterogeneous clients. This network utilizes an approximate global prototype to alleviate the non-IID dataset problem for each local client by projecting data onto a balanced prototype space. To validate the effectiveness of our algorithm, we employed three distinct datasets of color fundus photographs for diabetic retinopathy: the EyePACS, APTOS, and IDRiD datasets. During training, we incorporated 35k images from EyePACS, 3662 from APTOS, and 516 from IDRiD. For testing, we used 53k images from EyePACS. Additionally, we included the COVIDx dataset of chest X-rays for comparative analysis, comprising 29 986 training images and 400 test samples.
RESULTS: In this study, we conducted comprehensive comparisons with existing works using four medical image datasets. Specifically, on the EyePACS dataset under the balanced IID setting, our method outperformed the FedAvg baseline by 3.7% in accuracy. In the Dirichlet non-IID setting, which presents an extremely unbalanced distribution, our method showed a notable 6.6% enhancement in accuracy over FedAvg. Similarly, on the APTOS dataset, our method achieved a 3.7% improvement in accuracy over FedAvg under the balanced IID setting and a 5.0% improvement under the Dirichlet non-IID setting. Notably, on the DCC non-IID and COVID-19 datasets, our method established a new state-of-the-art across all evaluation metrics, including WAccuracy, WPrecision, WRecall, and WF-score.
CONCLUSIONS: Our proposed prototypical contrastive loss guides the local client's data distribution to align with the global distribution. Additionally, our method uses an approximate global prototype to address unbalanced dataset distribution across local clients by projecting all data onto a new balanced prototype space. Our model achieves state-of-the-art performance on the EyePACS, APTOS, IDRiD, and COVIDx datasets.

Keywords

References

  1. Ren SQ, He KM, Girshick R, Sun J. Faster R���CNN: towards real���time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137���1149. doi:10.1109/TPAMI.2016.2577031
  2. Zhao ZQ, Zheng P, Xu ST, Wu XD. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019;30(11):3212���3232. doi:10.1109/TNNLS.2018.2876865
  3. Lin GS, Liu FY, Milan A, Reid L. Refinenet: multi���path refinement networks for dense prediction. IEEE Trans Pattern Anal Mach Intell. 2020;42(5):1228���1242. doi:10.1109/TPAMI.2019.2893630
  4. Liu WD, Zhang C, Lin GS, Liu FY. Crnet: Cross���reference networks for few���shot segmentation. Paper presented at: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition; June 13���19, 2020; Seattle, WA, USA. Accessed September 22, 2024. https://ieeexplore.ieee.org/document/9156385
  5. Liu WD, Zhang C, Lin GS, and Liu FY. Crcnet: few���shot segmentation with cross���reference and region���global conditional networks. Int J Comput Vision. 2022;130(22):3140���3157. doi:10.1007/s11263���022���01677���7
  6. Liu WD, Zhang C, Ding DH, Hung TY, Lin GH. Few���shot segmentation with optimal transport matching and message flow. IEEE Trans Multimedia. 2023;25:5130���5141. doi:10.1109/TMM.2022.3187855
  7. Liu WD, Wu ZH, Zhao Y, et al. Harmonizing base and novel classes: a class���contrastive approach for generalized few���shot segmentation. Int J Comput Vision. 2024;132(4):1277���1291. doi:10.1007/s11263���023���01939���y
  8. You QZ, Jin HL, Wang ZW, Fang C, Luo JB. Image captioning with semantic attention. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June, 27���30, 2016; Las Vegas, NV, USA. Accessed September 22, 2024. https://ieeexplore.ieee.org/document/7780872
  9. Lin ZW, Guo RQ, Wang YJ, et al. A framework for identifying diabetic retinopathy based on anti���noise detection and attention���based fusion. Paper presented at: Medical Image Computing and Computer Assisted Intervention ��� MICCAI 2018: 21st International Conference; September, 16���20, 2018; Granada, Spain. doi:10.1007/978���3���030���00934���2_9
  10. Zhou Y, Wang BY, Huang L, Cui SS, Shao L. A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans Med Imaging. 2021;40(3):818���828. doi:10.1109/TMI.2020.3037771
  11. Zhou Y, He XD, Huang L, et al. Collaborative learning of semi���supervised segmentation and classification for medical images. Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June, 15���20, 2019; Long Beach, CA, USA. doi:10.1109/CVPR.2019.00218
  12. Pacheco AGC, Krohling RA. An attention���based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE J Biomed Health Inform. 2021;25(9):3554���3563. doi:10.1109/JBHI.2021.3062002
  13. Wu YH, Gao SH, Mei J, et al. JCS: an explainable covid���19 diagnosis system by joint classification and segmentation. IEEE Trans Image Process. 2021;30:3113���3126. doi:10.1109/TIP.2021.3058783
  14. Vrancx P, Verbeeck K, Nowe A. Decentralized learning in Markov games. IEEE Trans Syst Man Cybern B Cybern. 2008;38(4):976���981. doi:10.1109/TSMCB.2008.920998
  15. Hsieh K, Phanishayee A, Mutlu O, Gibbons PB. The non���iid data quagmire of decentralized machine learning. Paper presented at: ICML'20: Proceedings of the 37th International Conference on Machine Learning; 2020; PMLR 119:4387���4398. Accessed September 22, 2024. https://proceedings.mlr.press/v119/hsieh20a/hsieh20a.pdf
  16. McMahan B, Moore E, Ramage D, et al. Communication���efficient learning of deep networks from decentralized data. Paper presented at: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics; 2017; PMLR 54:1273���1282. Ft. Lauderdale, FL, USA. Accessed September 22, 2024. http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
  17. Li HY, Dong XF, Shen W, Ge FH, Li HS. Resampling���based cost loss attention network for explainable imbalanced diabetic retinopathy grading. Comput Biol Med. 2022;149:105970. doi:10.1016/j.compbiomed.2022.105970
  18. Masud M, Alhamid MF, Zhang Y. A convolutional neural network model using weighted loss function to detect diabetic retinopathy. ACM Trans Multimedia Comput Commun Appl. 2022;18(1):1���16. doi:10.1145/347097
  19. Wang JY, Liu QH, Liang H, Joshi G, Poor HV. Tackling the objective inconsistency problem in heterogeneous federated optimization. In: NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems. MIT Press; 2020:7611���7623.
  20. Li QB, Diao YQ, Chen Q, He BS. Federated learning on non���iid data silos: An experimental study. Paper presented at: 2022 IEEE 38th International Conference on Data Engineering (ICDE); May 09���12, 2022; Kuala Lumpur, Malaysia. doi:10.1109/ICDE53745.2022.00077
  21. Reddi SJ, Charles Z, Zaheer M, et al. Adaptive federated optimization. Paper presented at: International Conference on Learning Representations (ICLR 2021); ICLR; May 4, 2021; Vienna, Austria. Accessed October 15, 2024. https://openreview.net/forum?id=LkFG3lB13U5
  22. Wu XY, Huang HG, Ding YL, et al. FedNP: Towards non���IID federated learning via federated neural propagation. Paper presented at: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 37, no. 9; 2023. doi:10.1609/aaai.v37i9.26237
  23. Li QB, He BS, Song D. Model���contrastive federated learning. Paper presented at: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; June 20���25, 2021; Nashville, TN, USA. doi:10.1109/CVPR46437.2021.01057
  24. Tan Y, Long GD, Liu L, et al. Fedproto: Federated prototype learning across heterogeneous clients. Paper presented at: AAAI Conference on Artificial Intelligence, Vol 36; 2022:8432���8440. doi:10.1609/aaai.v36i8.20819
  25. Mu XT, Shen YL, Cheng K, et al. Fedproc: Prototypical contrastive federated learning on non���iid data. Future Gener Comput Syst. 2023;143(C):93���104. doi:10.1016/j.future.2023.01.019
  26. Li T, Sahu AK, Zaheer M, et al. Federated optimization in heterogeneous networks. Paper presented at: Proceedings of Machine Learning and Systems, Vol. 2, 2020:429���450.
  27. Banerjee A, Merugu S, Dhillon IS, Ghosh J. Clustering with Bregman divergences. J Mach Learn Res. 2005;6:1705���1749. doi:10.5555/1046920.1194902
  28. Emma D, Jared, Jorge, Will C. Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/competitions/diabetic���retinopathy���detection. 2015. Accessed October 15, 2024.
  29. Karthik, Maggie, Sohier D. Kaggle aptos 2019 blindness detection competition. https://www.kaggle.com/competitions/aptos2019���blindness���detection. 2015; Accessed October 15, 2024.
  30. Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. IEEE Int Symp Biomed Imaging. 2018;3(3):25. doi:10.3390/data3030025
  31. Wang LD, Lin ZQ, Wong A. COVID���Net: a tailored deep convolutional neural network design for detection of COVID���19 cases from chest X���ray images. Sci Rep. 2020;10:19549. doi:10.1038/s41598���020���76550���z
  32. Yurochkin M, Agarwal M, Ghosh S, et al. Bayesian nonparametric federated learning of neural networks. Paper presented at: International Conference on Machine Learning;June 9���15, 2019. Long Beach, California, USA.
  33. Tan MX, Le QV. Efficientnet: Rethinking model scaling for convolutional neural networks. Paper presented at: International Conference on Machine Learning; June 9���15, 2019. doi:10.48550/arXiv.1905.11946
  34. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. Paper presented at: 9th International Conference on Learning Representations; May 3���7, 2021.
  35. He KM, Zhang XY, Ren SQ, and Sun J. Deep residual learning for image recognition. Paper presented at: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; June 27���30, 2016. doi:10.1109/CVPR.2016.90
  36. He CY, Li SZ, So JY, et al. Fedml: A research library and benchmark for federated machine learning. 2020; doi:10.48550/arXiv.2007.13518

Grants

  1. 2022YFA1003702/National Key Research and Development Program of China
  2. TC220H056/Major Program of the Ministry of Industry and Information Technology
  3. 2022XAGG0111/Xiongan New Area Science and Technology Innovation Project
  4. 62371305/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0medicalnon-IIDmethodimagedatasetscontrastiveprototypedatasetEyePACSclassificationdatalearningprototypicalnetworkbalancedAPTOSsettingdistributionusingproblemacrossgloballocalIDRiDimagesFedAvgaccuracydecentralizedclientsapproximateprojectingontospacetrainingAdditionallyIID37%Dirichletunbalancedimprovementnewstate-of-the-artBACKGROUND:RecentlydeepconvolutionalneuralnetworksCNNsshowngreatpotentialtasksHoweverpracticalusagemethodsconstrainedtwochallenges:1challengenonindependentidenticallydistributedvariousinstitutionsensuringprivacy2imbalanceduefrequencydifferent diseasesPURPOSE:objectivepaperpresentnovelapproachaddressingchallengesachieveprecisemitigatingdifferent clientsMETHODS:proposeminimizesdisparitiesamongheterogeneousutilizesalleviateclientvalidateeffectivenessalgorithmemployedthreedistinctcolorfundusphotographsdiabeticretinopathy:incorporated35k3662516testingused53kincludedCOVIDxchestX-rayscomparativeanalysiscomprising29 986400test samplesRESULTS:studyconductedcomprehensivecomparisonsexistingworksfourSpecificallyoutperformedbaselinepresentsextremelyshowednotable66%enhancementSimilarlyachieved50%NotablyDCCCOVID-19establishedevaluationmetricsincludingWAccuracyWPrecisionWRecallWF-scoreCONCLUSIONS:proposedlossguidesclient'salignusesaddressmodelachievesperformanceCOVIDx datasetsDecentralizedfederated

Similar Articles

Cited By