Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying.

Holger Bolze, Keiran Mc Carogher, Simon Kuhn
Author Information
  1. Holger Bolze: KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium simon.kuhn@kuleuven.be.
  2. Keiran Mc Carogher: KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium simon.kuhn@kuleuven.be. ORCID
  3. Simon Kuhn: KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium simon.kuhn@kuleuven.be. ORCID

Abstract

Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.

References

  1. Biomicrofluidics. 2012 Aug 21;6(3):34114 [PMID: 23964308]
  2. Lab Chip. 2012 Mar 7;12(5):852-62 [PMID: 22301707]
  3. Ultrason Sonochem. 2021 Jun;74:105556 [PMID: 33915482]
  4. Lab Chip. 2009 Aug 7;9(15):2184-93 [PMID: 19606295]
  5. Ultrasonics. 1988 Sep;26(5):280-5 [PMID: 3407017]
  6. Ultrason Sonochem. 2021 Jul;75:105611 [PMID: 34119738]
  7. Lab Chip. 2012 Feb 21;12(4):684-95 [PMID: 22246532]
  8. Analyst. 2018 Feb 12;143(4):981-988 [PMID: 29376176]
  9. Lab Chip. 2017 Apr 11;17(8):1475-1480 [PMID: 28294220]
  10. Ultrason Sonochem. 2016 Mar;29:528-49 [PMID: 25982895]
  11. Ultrason Sonochem. 2016 Mar;29:568-76 [PMID: 26142078]
  12. Ultrason Sonochem. 2019 Apr;52:88-105 [PMID: 30482437]
  13. Lab Chip. 2019 Jan 15;19(2):316-327 [PMID: 30560264]
  14. Ultrason Sonochem. 2002 Oct;9(5):231-6 [PMID: 12371198]
  15. J Pharm Sci. 2010 Feb;99(2):587-97 [PMID: 19862804]
  16. Lab Chip. 2009 May 21;9(10):1435-8 [PMID: 19417911]
  17. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  18. Ultrason Sonochem. 2017 Nov;39:301-306 [PMID: 28732949]
  19. Ultrason Sonochem. 2023 Mar;94:106323 [PMID: 36774674]
  20. Eur J Pharm Sci. 2019 Feb 1;128:152-157 [PMID: 30521944]
  21. Ultrason Sonochem. 2023 Feb;93:106300 [PMID: 36696780]
  22. Lab Chip. 2015 Jul 7;15(13):2896-905 [PMID: 26037897]
  23. Science. 2004 Mar 19;303(5665):1818-22 [PMID: 15031496]
  24. J Pharm Sci. 2010 Feb;99(2):575-86 [PMID: 19774644]

Word Cloud

Created with Highcharts 10.0.0sizeatomizationdryingprocessdropletsparticlesultrasoundapproachappliedspraynanoparticlesSpraywell-establishedgeneratingvariousapplicationsincludingpharmaceuticalsplayscrucialroledefiningconsequentlyparticlecommonlyusedenhancereducingdropletnovelintroducedutilizesplugflowgenerateplugsresonatingfrequencytriggeringsurfacestudyinvestigatesapplicabilitymethodmicrofluidicparticularpharmaceuticalcarriergeneratedexhibit724μmPDI018indicatingmonodispersedistributionproduceddiscretebursteventsenablingenergy-efficientpulsedpowerless1Wsuccessfullygenerateslipidaverage140nmunderscoringpotentialnanoparticleproductionMicrofluidicgenerationusingstandingwaveinducedultrasonic

Similar Articles

Cited By

No available data.