Leonurine alleviates doxorubicin-induced myocarditis in mice via MAPK/ERK pathway inhibition.

Dachao Tang, Hu Jin, Meise Lin, Fuling Jiang, Jing Wu
Author Information
  1. Dachao Tang: Department of Cardiovascular Medicine, Wenzhou Hospital of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China.
  2. Hu Jin: Department of Cardiovascular Medicine, Wenzhou Hospital of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China.
  3. Meise Lin: Department of Cardiovascular Medicine, Wenzhou Hospital of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China.
  4. Fuling Jiang: Department of Cardiovascular Medicine, Wenzhou Hospital of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China.
  5. Jing Wu: Department of Cardiovascular Medicine, Wenzhou Hospital of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China.

Abstract

OBJECTIVE: To investigate the effects of naturally derived Leonurine (Leo) on doxorubicin (Dox)-induced myocarditis and analyze its potential mechanisms.
METHODS: Dox was intraperitoneally injected to establish a myocardial injury model in mice. The effect of Leo on inflammatory cytokine levels in myocardial tissue was assessed by ELISA. Pathological changes in myocardial tissue and apoptosis in myocardial cells were observed using hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Protein levels were analyzed by Western blot (WB). Mouse myocardial H9c2 cells were divided into control group, Dox group, Leo (10 ��mol/L) + Dox group, and Leo (20 ��mol/L) + Dox group. Cell viability was assessed using Cell Counting Kit-8 (CCK8), and the levels of inflammatory cytokines were measured. The oxidation level and protein levels in H9c2 cells were also detected.
RESULTS: Leo significantly reduced the levels of inflammatory cytokines in both serum and cell culture supernatant. Additionally, Leo also decreased the levels of inflammatory cytokines in cardiac tissue. Moreover, Leo suppressed Dox-induced myocardial cell apoptosis by modulating the BCL2 signaling pathway. In vitro studies revealed that both inflammatory cytokines and oxidative stress markers were decreased after treatment with Leo.
CONCLUSION: Leo exerts significant cardioprotective effects through anti-inflammatory mechanisms, likely mitigating Dox-induced myocardial inflammation by inhibiting the activation of MAPK/ERK pathways. These findings highlight Leo's potential as a promising cardioprotective agent, underscoring its therapeutic promise.

Keywords

References

  1. Mol Immunol. 2016 Jun;74:96-105 [PMID: 27174187]
  2. PLoS One. 2022 Nov 3;17(11):e0275258 [PMID: 36327230]
  3. Cancer Biol Ther. 2011 Jun 15;11(12):1008-16 [PMID: 21464611]
  4. Int J Biol Sci. 2022 Jan 1;18(2):760-770 [PMID: 35002523]
  5. Toxicology. 2019 Jun 15;422:1-13 [PMID: 31005592]
  6. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1453-67 [PMID: 26386112]
  7. Phytomedicine. 2023 Jan;108:154519 [PMID: 36332391]
  8. Biol Reprod. 2014 Aug;91(2):32 [PMID: 24966392]
  9. Life Sci. 2015 Feb 1;122:15-25 [PMID: 25476833]
  10. Nat Rev Cardiol. 2015 Nov;12(11):670-80 [PMID: 26194549]
  11. Drug Discov Today. 2007 Sep;12(17-18):777-85 [PMID: 17826691]
  12. Int J Mol Med. 2016 Jan;37(1):207-16 [PMID: 26549213]
  13. Reprod Toxicol. 2021 Jun;102:80-89 [PMID: 33878324]
  14. Phytomedicine. 2022 Nov;106:154439 [PMID: 36108374]
  15. Phytomedicine. 2010 Aug;17(10):753-9 [PMID: 20185283]
  16. Atherosclerosis. 2016 Apr;247:207-17 [PMID: 26926601]
  17. Immunol Lett. 2020 Jan;217:56-64 [PMID: 31707054]
  18. Brain Res. 2012 Sep 20;1474:73-81 [PMID: 22842526]
  19. Fitoterapia. 2018 Jul;128:36-42 [PMID: 29729400]
  20. Biomed Pharmacother. 2020 Aug;128:110246 [PMID: 32447210]
  21. Clin Med (Lond). 2021 Sep;21(5):e505-e510 [PMID: 34507935]
  22. Circulation. 2004 Jun 8;109(22):2749-54 [PMID: 15148277]
  23. Free Radic Biol Med. 2013 Jan;54:93-104 [PMID: 23127783]
  24. Commun Biol. 2021 Jun 8;4(1):696 [PMID: 34103645]
  25. Brain Behav. 2021 Feb;11(2):e01995 [PMID: 33300684]
  26. Exp Ther Med. 2022 Jul 14;24(3):570 [PMID: 36034755]
  27. J Biochem Mol Toxicol. 2021 Jan;35(1):e22615 [PMID: 32864822]
  28. Cell Biol Toxicol. 2007 Jan;23(1):15-25 [PMID: 17009097]
  29. Inflammation. 2015 Feb;38(1):79-88 [PMID: 25189466]
  30. Inflammation. 2017 Feb;40(1):154-165 [PMID: 27807688]
  31. Am J Med. 2020 Apr;133(4):492-499 [PMID: 31712098]
  32. Atherosclerosis. 2012 Sep;224(1):37-8 [PMID: 22560329]
  33. J Microbiol Immunol Infect. 2017 Oct;50(5):700-713 [PMID: 26055689]
  34. Redox Biol. 2022 Jun;52:102310 [PMID: 35452917]
  35. Int J Mol Sci. 2022 Jan 27;23(3): [PMID: 35163418]
  36. Compr Physiol. 2019 Jun 12;9(3):905-931 [PMID: 31187890]
  37. Int Immunopharmacol. 2023 Jul;120:110375 [PMID: 37267857]
  38. Mol Cell Biochem. 2016 Mar;414(1-2):57-66 [PMID: 26899709]
  39. Pharmacol Res. 2021 Jan;163:105243 [PMID: 33080322]
  40. Nat Rev Cardiol. 2021 Mar;18(3):169-193 [PMID: 33046850]
  41. Front Immunol. 2021 Jan 14;11:603437 [PMID: 33519812]

Word Cloud

Created with Highcharts 10.0.0LeomyocardiallevelsDoxinflammatorygroupcytokinesmyocarditistissueapoptosiscellsMAPK/ERKeffectsdoxorubicinpotentialmechanismsmiceassessedusingH9c2��mol/L+CellalsocelldecreasedDox-inducedpathwaycardioprotectiveLeonurineOBJECTIVE:investigatenaturallyderivedleonurine-inducedanalyzeMETHODS:intraperitoneallyinjectedestablishinjurymodeleffectcytokineELISAPathologicalchangesobservedhematoxylin-eosinHEterminaldeoxynucleotidyltransferasedUTPnick-endlabelingTUNELstainingProteinanalyzedWesternblotWBMousedividedcontrol1020viabilityCountingKit-8CCK8measuredoxidationlevelproteindetectedRESULTS:significantlyreducedserumculturesupernatantAdditionallycardiacMoreoversuppressedmodulatingBCL2signalingvitrostudiesrevealedoxidativestressmarkerstreatmentCONCLUSION:exertssignificantanti-inflammatorylikelymitigatinginflammationinhibitingactivationpathwaysfindingshighlightLeo'spromisingagentunderscoringtherapeuticpromisealleviatesdoxorubicin-inducedviainhibition

Similar Articles

Cited By

No available data.