Accelerating crop improvement via integration of transcriptome-based network biology and genome editing.

Izreen Izzati Razalli, Muhammad-Redha Abdullah-Zawawi, Amin-Asyraf Tamizi, Sarahani Harun, Rabiatul-Adawiah Zainal-Abidin, Muhammad Irfan Abdul Jalal, Mohammad Asad Ullah, Zamri Zainal
Author Information
  1. Izreen Izzati Razalli: Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
  2. Muhammad-Redha Abdullah-Zawawi: UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
  3. Amin-Asyraf Tamizi: Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia.
  4. Sarahani Harun: Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
  5. Rabiatul-Adawiah Zainal-Abidin: Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia.
  6. Muhammad Irfan Abdul Jalal: UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
  7. Mohammad Asad Ullah: Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
  8. Zamri Zainal: Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia. zz@ukm.edu.my. ORCID

Abstract

MAIN CONCLUSION: Big data and network biology infer functional coupling between genes. In combination with machine learning, network biology can dramatically accelerate the pace of gene discovery using modern transcriptomics approaches and be validated via genome editing technology for improving crops to stresses. Unlike other living things, plants are sessile and frequently face various environmental challenges due to climate change. The cumulative effects of combined stresses can significantly influence both plant growth and yields. In navigating the complexities of climate change, ensuring the nourishment of our growing population hinges on implementing precise agricultural systems. Conventional breeding methods have been commonly employed; however, their efficacy has been impeded by limitations in terms of time, cost, and infrastructure. Cutting-edge tools focussing on big data are being championed to usher in a new era in stress biology, aiming to cultivate crops that exhibit enhanced resilience to multifactorial stresses. Transcriptomics, combined with network biology and machine learning, is proving to be a powerful approach for identifying potential genes to target for gene editing, specifically to enhance stress tolerance. The integration of transcriptomic data with genome editing can yield significant benefits, such as gaining insights into gene function by modifying or manipulating of specific genes in the target plant. This review provides valuable insights into the use of transcriptomics platforms and the application of biological network analysis and machine learning in the discovery of novel genes, thereby enhancing the understanding of plant responses to combined or sequential stress. The transcriptomics as a forefront omics platform and how it is employed through biological networks and machine learning that lead to novel gene discoveries for producing multi-stress-tolerant crops, limitations, and future directions have also been discussed.

Keywords

References

  1. Aamir M, Shanmugam V, Dubey MK et al (2023) Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC Plant Biol 23:552. https://doi.org/10.1186/s12870-023-04502-6 [DOI: 10.1186/s12870-023-04502-6]
  2. Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205. https://doi.org/10.1080/21645698.2015.1129937 [DOI: 10.1080/21645698.2015.1129937]
  3. Abdallah NA, Elsharawy H, Abulela HA et al (2022) Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food 6:1–17. https://doi.org/10.1080/21645698.2022.2120313 [DOI: 10.1080/21645698.2022.2120313]
  4. Abdul Aziz M, Brini F, Rouached H, Masmoudi K (2022) Genetically engineered crops for sustainably enhanced food production systems. Front Plant Sci 13:1027828. https://doi.org/10.3389/fpls.2022.1027828 [DOI: 10.3389/fpls.2022.1027828]
  5. Abdullah-Zawawi MR, Govender N, Harun S et al (2022a) Multi-omics approaches and resources for systems-level gene function prediction in the plant Kingdom. Plants (Basel) 11:2614. https://doi.org/10.3390/plants11192614 [DOI: 10.3390/plants11192614]
  6. Abdullah-Zawawi MR, Tan LW, Ab Rahman Z et al (2022b) An integration of transcriptomic data and modular gene co-expression network analysis uncovers drought stress-related hub genes in transgenic rice overexpressing OsAbp57. Agronomy 12:1959. https://doi.org/10.3390/agronomy12081959 [DOI: 10.3390/agronomy12081959]
  7. Ahmar S, Gill RA, Jung KH (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590. https://doi.org/10.3390/ijms21072590 [DOI: 10.3390/ijms21072590]
  8. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9:2312. https://doi.org/10.1038/s41467-018-04632-8 [DOI: 10.1038/s41467-018-04632-8]
  9. Akagi T, Masuda K, Kuwada E et al (2022) Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning. Plant Cell 34:2174–2187. https://doi.org/10.1093/plcell/koac079 [DOI: 10.1093/plcell/koac079]
  10. Alam MS, Kong J, Tao R et al (2022) CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativaL.). Plants (Basel) 11:1184. https://doi.org/10.3390/plants11091184 [DOI: 10.3390/plants11091184]
  11. Alcalá-Corona SA, Sandoval-Motta S, Espinal-Enríquez J et al (2021) Modularity in biological networks. Front Genet 12:701331. https://doi.org/10.3389/fgene.2021.701331 [DOI: 10.3389/fgene.2021.701331]
  12. Alexandri FLD, Scolari S, Ferreira CR (2010) Reproductive biology in the “omics” era: what can be done? Anim Reprod 7:177
  13. Altaf-Ul-Amin Md, Tsuji H, Kurokawa K et al (2007) A density-periphery based graph clustering software developed for detection of protein complexes in interaction networks. ICoICT IEEE 2007:37–42. https://doi.org/10.1109/ICICT.2007.375338 [DOI: 10.1109/ICICT.2007.375338]
  14. Alvarez JM, Schinke AL, Brooks MD et al (2020) Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 11:1157. https://doi.org/10.1038/s41467-020-14979-6 [DOI: 10.1038/s41467-020-14979-6]
  15. Armoogum S, Li X (2019) Big data analytics and deep learning in bioinformatics with Hadoop. In: Sangaiah AK (ed) Deep learning and parallel computing environment for bioengineering systems. Elsevier, Netherlands, pp 17–36. https://doi.org/10.1016/B978-0-12-816718-2.00009-9 [DOI: 10.1016/B978-0-12-816718-2.00009-9]
  16. Arra Y, Auguy F, Stiebner M et al (2024) Rice yellow mottle virus resistance by genome editing of the Oryza sativa L. ssp. japonica nucleoporin gene OsCPR5.1 but not OsCPR5.2. Plant Biotechnol J 22:1299–1311. https://doi.org/10.1111/pbi.14266 [DOI: 10.1111/pbi.14266]
  17. Athanasopoulou K, Boti MA, Adamopoulos PG et al (2021) Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life (Basel) 12:30. https://doi.org/10.3390/life12010030 [DOI: 10.3390/life12010030]
  18. Azimi N, Ravash R, Zinati Z (2024) Microarray meta-analysis and supervised machine learning to explore drought-tolerance-associated genes in wheat (Triticum aestivum). Genet Resour Crop Evol. https://doi.org/10.1007/s10722-024-01893-9 [DOI: 10.1007/s10722-024-01893-9]
  19. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2. https://doi.org/10.1186/1471-2105-4-2 [DOI: 10.1186/1471-2105-4-2]
  20. Badia-I-Mompel P, Wessels L, Müller-Dott S et al (2023) Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet 24:739–754. https://doi.org/10.1038/s41576-023-00618-5 [DOI: 10.1038/s41576-023-00618-5]
  21. Baldoni E (2022) Improving drought tolerance: can comparative transcriptomics support strategic rice breeding? Plant Stress 3:100058. https://doi.org/10.1016/j.stress.2022.100058 [DOI: 10.1016/j.stress.2022.100058]
  22. Balfagón D, Zandalinas SI, Mittler R et al (2020) High temperatures modify plant responses to abiotic stress conditions. Physiol Plant 170:335–344. https://doi.org/10.1111/ppl.13151 [DOI: 10.1111/ppl.13151]
  23. Bano N, Fakhrah S, Mohanty CS et al (2022) Transcriptome meta-analysis associated targeting hub genes and pathways of drought and salt stress responses in cotton (Gossypium hirsutum): a network biology approach. Front Plant Sci 13:818472. https://doi.org/10.3389/fpls.2022.818472 [DOI: 10.3389/fpls.2022.818472]
  24. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. https://doi.org/10.1038/nrg1272 [DOI: 10.1038/nrg1272]
  25. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451. https://doi.org/10.1038/nrm.2017.27 [DOI: 10.1038/nrm.2017.27]
  26. Bashir K, Matsui A, Rasheed S et al (2019) Recent advances in the characterization of plant transcriptomes in response to drought salinity heat and cold stress. F1000Res. https://doi.org/10.12688/f1000research.18424.1 [DOI: 10.12688/f1000research.18424.1]
  27. Bassel GW, Gaudinier A, Brady SM et al (2012) Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 24:3859–3875. https://doi.org/10.1105/tpc.112.100776 [DOI: 10.1105/tpc.112.100776]
  28. Bebek G (2012) Identifying gene interaction networks. Methods Mol Biol 850:483–494 [DOI: 10.1007/978-1-61779-555-8_26]
  29. Beracochea V, Stritzler M, Radonic L (2023) CRISPR/Cas9-mediated knockout of SPL13 radically increases lettuce yield. Plant Cell Rep 42:645–647. https://doi.org/10.1007/s00299-022-02952-0 [DOI: 10.1007/s00299-022-02952-0]
  30. Blumenberg M (2019) Introductory Chapter: Transcriptome Analysis. In: Blumenberg M (ed) IntechOpen. London. https://doi.org/10.5772/intechopen.85980 [DOI: 10.5772/intechopen.85980]
  31. Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb2201s101 [DOI: 10.1002/0471142727.mb2201s101]
  32. Cardi T, Murovec J, Bakhsh A et al (2023) CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trends Plant Sci 28:1144–1165. https://doi.org/10.1016/j.tplants.2023.05.012 [DOI: 10.1016/j.tplants.2023.05.012]
  33. Chang LY, Lee MZ, Wu Y et al (2024) Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles. Nucleic Acids Res 52:e17. https://doi.org/10.1093/nar/gkad1187 [DOI: 10.1093/nar/gkad1187]
  34. Chen J, Suo S, Tam PP et al (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12:566–580. https://doi.org/10.1038/nprot.2017.003 [DOI: 10.1038/nprot.2017.003]
  35. Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049 [DOI: 10.1146/annurev-arplant-050718-100049]
  36. Chen A, Liao S, Cheng M et al (2022) Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185:1777-1792.e21. https://doi.org/10.1016/j.cell.2022.04.003 [DOI: 10.1016/j.cell.2022.04.003]
  37. Chen C, Ge Y, Lu L (2023a) Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants. Front Plant Sci 14:1185377. https://doi.org/10.3389/fpls.2023.1185377 [DOI: 10.3389/fpls.2023.1185377]
  38. Chen L, Yang J, Hu H et al (2023b) Large-scale phosphoproteome analysis in wheat seedling leaves provides evidence for extensive phosphorylation of regulatory proteins during CWMV infection. BMC Plant Biol 23:532. https://doi.org/10.1186/s12870-023-04559-3 [DOI: 10.1186/s12870-023-04559-3]
  39. Cheng L, Jiang G, Zhou A et al (2015) Challenges and strategies for differential transcriptome analysis from microarray to deep sequencing in statistics. Ann Biom Biostat 2:1014
  40. Cheng CW, Beech DJ, Wheatcroft SB (2020) Advantages of CEMiTool for gene co-expression analysis of RNA-seq data. Comput Biol Med 125:103975. https://doi.org/10.1016/j.compbiomed.2020.103975 [DOI: 10.1016/j.compbiomed.2020.103975]
  41. Cho CS, Xi J, Si Y et al (2021) Microscopic examination of spatial transcriptome using seq-scope. Cell 184:3559-3572.e22. https://doi.org/10.1016/j.cell.2021.05.010 [DOI: 10.1016/j.cell.2021.05.010]
  42. Choobdar S, Ahsen ME, Crawford J et al (2019) Assessment of network module identification across complex diseases. Nat Methods 16:843–852. https://doi.org/10.1038/s41592-019-0509-5 [DOI: 10.1038/s41592-019-0509-5]
  43. Corsi GI, Gadekar VP, Gorodkin J, Seemann SE (2022) CRISPRroots: on- and off-target assessment of RNA-seq data in CRISPR-Cas9 edited cells. Nucleic Acids Res 50:e20. https://doi.org/10.1093/nar/gkab1131 [DOI: 10.1093/nar/gkab1131]
  44. Cui J, Shen N, Lu Z et al (2020) Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome. Plant Methods 16:85. https://doi.org/10.1186/s13007-020-00629-x [DOI: 10.1186/s13007-020-00629-x]
  45. Cuperus JT (2022) Single-cell genomics in plants: current state, future directions, and hurdles to overcome. Plant Physiol 188:749–755. https://doi.org/10.1093/plphys/kiab478 [DOI: 10.1093/plphys/kiab478]
  46. Del Toro N, Shrivastava A, Ragueneau E et al (2022) The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res 50:D648–D653. https://doi.org/10.1093/nar/gkab1006 [DOI: 10.1093/nar/gkab1006]
  47. DeLaughter DM (2018) The use of the fluidigm C1 for RNA expression analyses of single cells. Curr Protoc Mol Biol 122:e55. https://doi.org/10.1002/cpmb.55 [DOI: 10.1002/cpmb.55]
  48. Ding J, Adiconis X, Simmons SK et al (2020) Author correction: systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38:756. https://doi.org/10.1038/s41587-020-0534-z [DOI: 10.1038/s41587-020-0534-z]
  49. Diss G, Lehner B (2018) The genetic landscape of a physical interaction. Elife 7:e32472. https://doi.org/10.7554/elife.32472 [DOI: 10.7554/elife.32472]
  50. Dos Santos BS, da Silva LC, da Silva TD et al (2016) Application of omics technologies for evaluation of antibacterial mechanisms of action of plant-derived products. Front Microbiol 7:1466. https://doi.org/10.3389/fmicb.2016.01466 [DOI: 10.3389/fmicb.2016.01466]
  51. Elavarasan D, Vincent PMD (2020) Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–86901. https://doi.org/10.1109/ACCESS.2020.2992480 [DOI: 10.1109/ACCESS.2020.2992480]
  52. Eling N, Morgan MD, Marioni JC (2019) Author correction: challenges in measuring and understanding biological noise. Nat Rev Genet 20(9):562. https://doi.org/10.1038/s41576-019-0142-2 [DOI: 10.1038/s41576-019-0142-2]
  53. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584. https://doi.org/10.1093/nar/30.7.1575 [DOI: 10.1093/nar/30.7.1575]
  54. Fang Z, Ford AJ, Hu T et al (2023) Subcellular spatially resolved gene neighborhood networks in single cells. Cell Rep Methods 3:100476. https://doi.org/10.1016/j.crmeth.2023.100476 [DOI: 10.1016/j.crmeth.2023.100476]
  55. Farahbod M, Pavlidis P (2020) Untangling the effects of cellular composition on coexpression analysis. Genome Res 30:849–859. https://doi.org/10.1101/gr.256735.119 [DOI: 10.1101/gr.256735.119]
  56. Fionda V (2018) Networks in biology. In: Ranganathan S et al (eds) Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1st edn. Elsevier, Cambridge MA, pp 915–921
  57. Fischer J, Ayers T (2021) Single-nucleus RNA-sequencing: how it’s done, applications and limitations. Emerg Top Life Sci 5:687–690. https://doi.org/10.1042/etls20210074 [DOI: 10.1042/etls20210074]
  58. Furlotte NA, Kang HM, Ye C (2011) Mixed-model coexpression: calculating gene coexpression whilst accounting for expression heterogeneity. Bioinformatics 27:i288–i294. https://doi.org/10.1093/bioinformatics/btr221 [DOI: 10.1093/bioinformatics/btr221]
  59. Gaj T, Sirk SJ, Shui SL et al (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754. https://doi.org/10.1101/cshperspect.a023754 [DOI: 10.1101/cshperspect.a023754]
  60. Gao F, Shen Y, Brett Sallach J et al (2022) Predicting crop root concentration factors of organic contaminants with machine learning models. J Hazard Mater 424:127437. https://doi.org/10.1016/j.jhazmat.2021.127437 [DOI: 10.1016/j.jhazmat.2021.127437]
  61. Gardiner LJ, Rusholme-Pilcher R, Colmer J et al (2021) Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function. Proc Natl Acad Sci U S A 118:e2103070118. https://doi.org/10.1073/pnas.2103070118 [DOI: 10.1073/pnas.2103070118]
  62. Gasparis S, Przyborowski M, Kała M, Nadolska-Orczyk A (2019) Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells 8:782. https://doi.org/10.3390/cells8080782 [DOI: 10.3390/cells8080782]
  63. Ge BK, Hu GM, Chen R et al (2022) MSClustering: a cytoscape tool for multi-level clustering of biological networks. Int J Mol Sci 23:14240. https://doi.org/10.3390/ijms232214240 [DOI: 10.3390/ijms232214240]
  64. Giacomello S (2021) A new era for plant science: spatial single-cell transcriptomics. Curr Opin Plant Biol 60:102041. https://doi.org/10.1016/j.pbi.2021.102041 [DOI: 10.1016/j.pbi.2021.102041]
  65. Giacomello S, Salmén F, Terebieniec BK et al (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061. https://doi.org/10.1038/nplants.2017.61 [DOI: 10.1038/nplants.2017.61]
  66. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826. https://doi.org/10.1073/pnas.122653799 [DOI: 10.1073/pnas.122653799]
  67. Gligorijević V, Pržulj N (2015) Methods for biological data integration: perspectives and challenges. J R Soc Interface 12:20150571. https://doi.org/10.1098/rsif.2015.0571 [DOI: 10.1098/rsif.2015.0571]
  68. Govindarajan R, Duraiyan J, Kaliyappan K, Palanisamy M (2012) Microarray and its applications. J Pharm Bioallied Sci 4:S310–S312. https://doi.org/10.4103/0975-7406.100283 [DOI: 10.4103/0975-7406.100283]
  69. Goymer P (2008) Network biology: why do we need hubs? Nat Rev Genet 9:650. https://doi.org/10.1038/nrg2450 [DOI: 10.1038/nrg2450]
  70. Graham N, Patil GB, Bubeck DM et al (2020) Plant genome editing and the relevance of off-target changes. Plant Physiol 183:1453–1471. https://doi.org/10.1104/pp.19.01194 [DOI: 10.1104/pp.19.01194]
  71. Großkinsky DK, Van Der Graaff E, Roitsch T (2016) Regulation of abiotic and biotic stress responses by plant hormones. Plant Patho Resist Biotech 2016:131–154. https://doi.org/10.1002/9781118867716.ch7 [DOI: 10.1002/9781118867716.ch7]
  72. Guo C, Ma X, Gao F et al (2023a) Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 11:1143157. https://doi.org/10.3389/fbioe.2023.1143157 [DOI: 10.3389/fbioe.2023.1143157]
  73. Guo S, Liu Z, Sheng H et al (2023b) Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency. Planta 258:99. https://doi.org/10.1007/s00425-023-04260-7 [DOI: 10.1007/s00425-023-04260-7]
  74. Gupta N, Verma VK (2019) Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. In: Arora PK (ed) Microbial Technology for the Welfare of Society, 1st edn. Springer Nature, Singapore, pp 313–341 [DOI: 10.1007/978-981-13-8844-6_15]
  75. Gupta C, Ramegowda V, Basu S et al (2021) Using network-based machine learning to predict transcription factors involved in drought resistance. Front Genet 12:652189. https://doi.org/10.3389/fgene.2021.652189 [DOI: 10.3389/fgene.2021.652189]
  76. Han X, Chen Z, Li P et al (2022) Development of novel rice germplasm for salt-tolerance at seedling stage using CRISPR-Cas9. Sustain 14:2621. https://doi.org/10.3390/su14052621 [DOI: 10.3390/su14052621]
  77. Hansen BO, Vaid N, Musialak-Lange M et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. https://doi.org/10.3389/fpls.2014.00394 [DOI: 10.3389/fpls.2014.00394]
  78. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83. https://doi.org/10.1186/s13059-017-1215-1 [DOI: 10.1186/s13059-017-1215-1]
  79. Hassani-Pak K, Singh A, Brandizi M et al (2021) KnetMiner: a comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. Plant Biotechnol J 19:1670–1678. https://doi.org/10.1111/pbi.13583 [DOI: 10.1111/pbi.13583]
  80. Hekman JP, Johnson JL, Kukekova AV (2016) Transcriptome analysis in domesticated species: challenges and strategies. Bioinform Biol Insights 9:21–31. https://doi.org/10.4137/bbi.s29334 [DOI: 10.4137/bbi.s29334]
  81. Hinge VR, Chavhan RL, Kale SP et al (2021) Engineering resistance against viruses in field crops using CRISPR- Cas9. Curr Genomics 22:214–231. https://doi.org/10.2174/1389202922666210412102214 [DOI: 10.2174/1389202922666210412102214]
  82. Huo Q, Song R, Ma Z (2024) Recent advances in exploring transcriptional regulatory landscape of crops. Front Plant Sci 15:1421503. https://doi.org/10.3389/fpls.2024.1421503 [DOI: 10.3389/fpls.2024.1421503]
  83. Iqbal S, Pan Z, Wu X et al (2020) Genome-wide analysis of PmTCP4 transcription factor binding sites by ChIP-Seq during pistil abortion in Japanese apricot. Plant Genome 13:e20052. https://doi.org/10.1002/tpg2.20052 [DOI: 10.1002/tpg2.20052]
  84. Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87. https://doi.org/10.3389/fmicb.2019.00087 [DOI: 10.3389/fmicb.2019.00087]
  85. Jalili M, Gebhardt T, Wolkenhauer O et al (2018) Unveiling network-based functional features through integration of gene expression into protein networks. Biochim Biophys Acta Mol Basis Dis 1864:2349–2359. https://doi.org/10.1016/j.bbadis.2018.02.010 [DOI: 10.1016/j.bbadis.2018.02.010]
  86. Jiang J, Xing F, Wang C et al (2018) Identification and analysis of rice yield-related candidate genes by walking on the functional network. Front Plant Sci 9:1685. https://doi.org/10.3389/fpls.2018.01685 [DOI: 10.3389/fpls.2018.01685]
  87. Jin J, Cheng L, Meng L et al (2024) Single-nucleus RNA sequencing of Nicotiana tabacum seedlings reveals heterogeneity amongst cell types. Ind Crops Prod 208:117825. https://doi.org/10.1016/j.indcrop.2023.117825 [DOI: 10.1016/j.indcrop.2023.117825]
  88. Kaiser N, Douches D, Dhingra A et al (2020) The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends Food Sci Technol 100:51–66. https://doi.org/10.1016/j.tifs.2020.03.042 [DOI: 10.1016/j.tifs.2020.03.042]
  89. Karavolias NG, Horner W, Abugu MN et al (2021) Application of gene editing for climate change in agriculture. Front Sustain Food Syst 5:685801. https://doi.org/10.3389/fsufs.2021.685801 [DOI: 10.3389/fsufs.2021.685801]
  90. Kasianov AS, Klepikova AV, Mayorov AV et al (2023) Interspecific comparison of gene expression profiles using machine learning. PLoS Comput Biol 19:e1010743. https://doi.org/10.1371/journal.pcbi.1010743 [DOI: 10.1371/journal.pcbi.1010743]
  91. Kato-Nitta N, Maeda T, Inagaki Y et al (2019) Expert and public perceptions of gene-edited crops: attitude changes in relation to scientific knowledge. Palgrave Commun 5:137. https://doi.org/10.1057/s41599-019-0328-4 [DOI: 10.1057/s41599-019-0328-4]
  92. Ke R, Mignardi M, Pacureanu A (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10:857–860. https://doi.org/10.1038/nmeth.2563 [DOI: 10.1038/nmeth.2563]
  93. Kim MS, Ko SR, Jung YJ et al (2023) Knockout mutants of OsPUB7 generated using CRISPR/Cas9 revealed abiotic stress tolerance in rice. Int J Mol Sci 24:5338. https://doi.org/10.3390/ijms24065338 [DOI: 10.3390/ijms24065338]
  94. Kim MS, Le VT, Jung YJ et al (2024) OsPUB9Gene edited by CRISPR/Cas9 enhanced resistance to bacterial leaf blight in rice (Oryza sativa L.). Int J Mol Sci 25:7145. https://doi.org/10.3390/ijms25137145 [DOI: 10.3390/ijms25137145]
  95. Klein AM, Macosko E (2017) InDrops and drop-seq technologies for single-cell sequencing. Lab Chip 17:2540–2541. https://doi.org/10.1039/c7lc90070h [DOI: 10.1039/c7lc90070h]
  96. Ko DK, Brandizzi F (2020) Network-based approaches for understanding gene regulation and function in plants. Plant J 104:302–317. https://doi.org/10.1111/tpj.14940 [DOI: 10.1111/tpj.14940]
  97. Kollist H, Zandalinas SI, Sengupta S (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24:25–37. https://doi.org/10.1016/j.tplants.2018.10.003 [DOI: 10.1016/j.tplants.2018.10.003]
  98. Konecny T, Nikoghosyan M, Binder H (2023) Machine learning extracts marks of thiamine’s role in cold acclimation in the transcriptome of Vitis vinifera. Front Plant Sci 14:1303542. https://doi.org/10.3389/fpls.2023.1303542 [DOI: 10.3389/fpls.2023.1303542]
  99. Krishnamurthy A, Ferl RJ, Paul AL (2018) Comparing RNA-Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Appl Plant Sci 6:e01197. https://doi.org/10.1002/aps3.1197 [DOI: 10.1002/aps3.1197]
  100. Kumar A, Pathak RK, Gupta SM et al (2015) Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. OMICS 19:581–601. https://doi.org/10.1089/omi.2015.0106 [DOI: 10.1089/omi.2015.0106]
  101. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559 [DOI: 10.1186/1471-2105-9-559]
  102. Lee KK, Kim H, Lee YH (2022) Cross-kingdom co-occurrence networks in the plant microbiome: importance and ecological interpretations. Front Microbiol 13:953300. https://doi.org/10.3389/fmicb.2022.953300 [DOI: 10.3389/fmicb.2022.953300]
  103. Leiboff S, Strable J, Johnston R (2021) Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytol 230:218–227. https://doi.org/10.1111/nph.17132 [DOI: 10.1111/nph.17132]
  104. Li Y, Chao X (2021) Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 17:68. https://doi.org/10.1186/s13007-021-00770-1 [DOI: 10.1186/s13007-021-00770-1]
  105. Li J, Hou R, Niu X, Liu R et al (2016) Comparison of microarray and RNA-Seq analysis of mRNA expression in dermal mesenchymal stem cells. Biotechnol Lett 38:33–41. https://doi.org/10.1007/s10529-015-1963-5 [DOI: 10.1007/s10529-015-1963-5]
  106. Li H, Yang Y, Hong W et al (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1. https://doi.org/10.1038/s41392-019-0089-y [DOI: 10.1038/s41392-019-0089-y]
  107. Li X, Zhang X, Gao S et al (2022) Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes. Crop J 10:1589–1600. https://doi.org/10.1016/j.cj.2022.02.004 [DOI: 10.1016/j.cj.2022.02.004]
  108. Li C, Zhang S, Yan X et al (2023) Single-nucleus sequencing deciphers developmental trajectories in rice pistils. Dev Cell 58:694-708.e4. https://doi.org/10.1016/j.devcel.2023.03.004 [DOI: 10.1016/j.devcel.2023.03.004]
  109. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857-861. https://doi.org/10.1093/nar/gkr930 [DOI: 10.1093/nar/gkr930]
  110. Lieben L (2017) Plant genetics: spatial transcriptomics in plants. Nat Rev Genet 18:394. https://doi.org/10.1038/nrg.2017.41 [DOI: 10.1038/nrg.2017.41]
  111. Lim PK, Zheng X, Goh JC et al (2022) Exploiting plant transcriptomic databases: resources, tools, and approaches. Plant Commun 3:100323. https://doi.org/10.1016/j.xplc.2022.100323 [DOI: 10.1016/j.xplc.2022.100323]
  112. Limera C, Sabbadini S, Sweet JB et al (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1418. https://doi.org/10.3389/fpls.2017.01418 [DOI: 10.3389/fpls.2017.01418]
  113. Lin JS, Lai EM (2024) Protein-protein interactions: yeast two hybrid. Methods Mol Biol 2715:235–246. https://doi.org/10.1007/978-1-0716-3445-5_15 [DOI: 10.1007/978-1-0716-3445-5_15]
  114. Lin J, Wong KC (2018) Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics 34:i656–i663. https://doi.org/10.1093/bioinformatics/bty554 [DOI: 10.1093/bioinformatics/bty554]
  115. Liu Y, Yang M, Deng Y et al (2020a) High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183:1665-1681.e18. https://doi.org/10.1016/j.cell.2020.10.026 [DOI: 10.1016/j.cell.2020.10.026]
  116. Liu Z, Zhou Y, Guo J et al (2020b) Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol Plant 13:1178–1193. https://doi.org/10.1016/j.molp.2020.06.010 [DOI: 10.1016/j.molp.2020.06.010]
  117. Lowe R, Shirley N, Bleackley M et al (2017) Transcriptomics technologies. PLoS Comput Biol 13:e1005457. https://doi.org/10.1371/journal.pcbi.1005457 [DOI: 10.1371/journal.pcbi.1005457]
  118. Luo X, Wei Y, Zheng Y et al (2023) Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC Plant Biol 23:11. https://doi.org/10.1186/s12870-022-04012-x [DOI: 10.1186/s12870-022-04012-x]
  119. Lv L, Zhao A, Zhang Y et al (2021) Proteome and transcriptome analyses of wheat near isogenic lines identifies key proteins and genes of wheat bread quality. Sci Rep 11:9978. https://doi.org/10.1038/s41598-021-89140-4 [DOI: 10.1038/s41598-021-89140-4]
  120. Lv H, Wang X, Dong X et al (2024) CRISPR/Cas9 edited SlGT30 improved both drought resistance and fruit yield through endoreduplication. Plant Cell Environ. https://doi.org/10.1111/pce.14927 [DOI: 10.1111/pce.14927]
  121. Mann A, Kumari J, Kumar R et al (2023) Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield. Plant Biotechnol J 21:2182–2195. https://doi.org/10.1111/pbi.14121 [DOI: 10.1111/pbi.14121]
  122. Martin BK, Qiu C, Nichols E et al (2023) Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat Protoc 18:188–207. https://doi.org/10.1038/s41596-022-00752-0 [DOI: 10.1038/s41596-022-00752-0]
  123. Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361. https://doi.org/10.3389/fpls.2018.01361 [DOI: 10.3389/fpls.2018.01361]
  124. Mishra R, Mohanty JN, Mahanty B, Joshi RK (2021) A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta 254:5. https://doi.org/10.1007/s00425-021-03660-x [DOI: 10.1007/s00425-021-03660-x]
  125. Mohammadi P, Asefpour Vakilian K (2023) Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. Plant Methods 19:123. https://doi.org/10.1186/s13007-023-01095-x [DOI: 10.1186/s13007-023-01095-x]
  126. Mohanty BP, Mohanty D, Mitra T et al (2021) Big data science and omics technology. In: Sarkar UK et al (eds) Fisheries biology: New approaches and changing perspectives. Narendra Publishing House, Delhi, pp 251–270
  127. Montenegro JD (2022) Gene co-expression network analysis. Methods Mol Biol 2443:387–404. https://doi.org/10.1007/978-1-0716-2067-0_19 [DOI: 10.1007/978-1-0716-2067-0_19]
  128. Muhammad II, Kong SL, Akmar Abdullah SN et al (2019) RNA-seq and ChIP-seq as complementary approaches for comprehension of plant transcriptional regulatory mechanism. Int J Mol Sci 21:167. https://doi.org/10.3390/ijms21010167 [DOI: 10.3390/ijms21010167]
  129. Muñoz A, Castellano MM (2018) Coimmunoprecipitation of interacting proteins in plants. Methods Mol Biol 1794:279–287. https://doi.org/10.1007/978-1-4939-7871-7_19 [DOI: 10.1007/978-1-4939-7871-7_19]
  130. Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb0411s89 [DOI: 10.1002/0471142727.mb0411s89]
  131. Nasti L, Vecchiato G, Heuret P et al (2024) A Reinforcement learning approach to study climbing plant behaviour. Sci Rep 14:18222. https://doi.org/10.1038/s41598-024-62147-3 [DOI: 10.1038/s41598-024-62147-3]
  132. Nazari L, Zinati Z (2023) Transcriptional survey of abiotic stress response in maize (Zea mays) in the level of gene co-expression network and differential gene correlation analysis. AoB Plants 16:plad087. https://doi.org/10.1093/aobpla/plad087 [DOI: 10.1093/aobpla/plad087]
  133. Negi A, Shukla A, Jaiswar A et al (2022) Applications and challenges of microarray and RNA-sequencing. In: Singh DB et al (eds) Bioinformatics: Methods and Applications, 1st edn. Elsevier, Netherlands, pp 91–103 [DOI: 10.1016/B978-0-323-89775-4.00016-X]
  134. Nejat N, Ramalingam A, Mantri N (2018) Advances in Transcriptomics of Plants. Adv Biochem Eng Biotechnol 164:161–185. https://doi.org/10.1007/10_2017_52 [DOI: 10.1007/10_2017_52]
  135. Niazian M, Niedbała G (2020) Machine learning for plant breeding and biotechnology. Agriculture 10(10):436. https://doi.org/10.3390/agriculture10100436 [DOI: 10.3390/agriculture10100436]
  136. Nithya C, Kiran M, Nagarajaram HA (2023) Dissection of hubs and bottlenecks in a protein-protein interaction network. Comput Biol Chem 102:107802. https://doi.org/10.1016/j.compbiolchem.2022.107802 [DOI: 10.1016/j.compbiolchem.2022.107802]
  137. Nong C, Fan X, Wang J (2022) Semi-supervised learning for weed and crop segmentation using UAV imagery. Front Plant Sci 13:927368. https://doi.org/10.3389/fpls.2022.927368 [DOI: 10.3389/fpls.2022.927368]
  138. Noor E, Cherkaoui S, Sauer U (2019) Biological insights through omics data integration. Curr Opin Syst Biol 15:39–47. https://doi.org/10.1016/j.coisb.2019.03.007 [DOI: 10.1016/j.coisb.2019.03.007]
  139. Nourozi M, Nazarain-Firouzabadi F, Ismaili A et al (2024) CRISPR/Cas StNRL1gene knockout increases resistance to late blight and susceptibility to early blight in potato. Front Plant Sci 14:1278127. https://doi.org/10.3389/fpls.2023.1278127 [DOI: 10.3389/fpls.2023.1278127]
  140. Ooi SE, Feshah I, Nuraziyan A et al (2021) Leaf transcriptomic signatures for somatic embryogenesis potential of Elaeis guineensis. Plant Cell Rep 40:1141–1154. https://doi.org/10.1007/s00299-021-02698-1 [DOI: 10.1007/s00299-021-02698-1]
  141. Oughtred R, Rust J, Chang C et al (2021) The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30:187–200. https://doi.org/10.1002/pro.3978 [DOI: 10.1002/pro.3978]
  142. Ovens K, Eames BF, McQuillan I (2021) Comparative analyses of gene co-expression networks: implementations and applications in the study of evolution. Front Genet 12:695399. https://doi.org/10.3389/fgene.2021.695399 [DOI: 10.3389/fgene.2021.695399]
  143. Palazzo AF, Lee ES (2015) Non-coding RNA: what is functional and what is junk? Front Genet 6:2. https://doi.org/10.3389/fgene.2015.00002 [DOI: 10.3389/fgene.2015.00002]
  144. Pardo-Diaz J, Poole PS, Beguerisse-Díaz M et al (2022) Generating weighted and thresholded gene coexpression networks using signed distance correlation. Netw Sci (Camb Univ Press) 10:131–145. https://doi.org/10.1017/nws.2022.13 [DOI: 10.1017/nws.2022.13]
  145. Park JH, Kim H (2023) Harnessing CRISPR/Cas9 for enhanced disease resistance in hot peppers: a comparative study on CaMLO2-Gene-editing efficiency across six cultivars. Int J Mol Sci 24:16775. https://doi.org/10.3390/ijms242316775 [DOI: 10.3390/ijms242316775]
  146. Peirats-Llobet M, Yi C, Liew LC et al (2023) Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 51:7798–7819. https://doi.org/10.1093/nar/gkad521 [DOI: 10.1093/nar/gkad521]
  147. Pernet CR, Wilcox R, Rousselet GA (2013) Robust correlation analyses: false positive and power validation using a new open source matlab toolbox. Front Psychol 3:606. https://doi.org/10.3389/fpsyg.2012.00606 [DOI: 10.3389/fpsyg.2012.00606]
  148. Petereit J, Smith S, Harris FC Jr et al (2016) petal: co-expression network modelling in R. BMC Syst Biol 10(Suppl 2):51. https://doi.org/10.1186/s12918-016-0298-8 [DOI: 10.1186/s12918-016-0298-8]
  149. Philips JG, Martin-Avila E, Robold AV (2022) Horizontal gene transfer from genetically modified plants - regulatory considerations. Front Bioeng Biotechnol 10:971402. https://doi.org/10.3389/fbioe.2022.971402 [DOI: 10.3389/fbioe.2022.971402]
  150. Picelli S, Faridani OR, Björklund AK et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006 [DOI: 10.1038/nprot.2014.006]
  151. Qaisar U, Yousaf S, Rehman T et al (2017) Transcriptome Analysis and Genetic Engineering. In: Marchi FA (ed) Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health. IntechOpen, London. https://doi.org/10.5772/intechopen.69372 [DOI: 10.5772/intechopen.69372]
  152. Qiao D, Yang C, Guo Y et al (2023) Transcriptome and co-expression network analysis uncover the key genes mediated by endogenous defense hormones in tea plant in response to the infestation of Empoasca onukii Matsuda. Bev Plant Res 3:4. https://doi.org/10.48130/BPR-2023-0004 [DOI: 10.48130/BPR-2023-0004]
  153. Qin Y, Sun M, Li W et al (2022) Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnol J 20:2372–2388. https://doi.org/10.1111/pbi.13918 [DOI: 10.1111/pbi.13918]
  154. Ramulifho E, Rey C (2024) A coiled-coil nucleotide-binding domain leucine-rich repeat receptor gene MeRPPL1 plays a role in the replication of a geminivirus in cassava. Viruses 16:941. https://doi.org/10.3390/v16060941 [DOI: 10.3390/v16060941]
  155. Rao X, Dixon RA (2019) Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai) 51:981–988. https://doi.org/10.1093/abbs/gmz080 [DOI: 10.1093/abbs/gmz080]
  156. Rao VS, Srinivas K, Sujini GN et al (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:147648. https://doi.org/10.1155/2014/147648 [DOI: 10.1155/2014/147648]
  157. Rao MS, Van Vleet TR, Ciurlionis R et al (2019) Comparison of RNA-seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet 9:636. https://doi.org/10.3389/fgene.2018.00636 [DOI: 10.3389/fgene.2018.00636]
  158. Rasheed S, Bashir K, Matsui A et al (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front Plant Sci 7:180. https://doi.org/10.3389/fpls.2016.00180 [DOI: 10.3389/fpls.2016.00180]
  159. Rau A, Maugis-Rabusseau C (2018) Transformation and model choice for RNA-seq co-expression analysis. Brief Bioinform 19(3):425–436. https://doi.org/10.1093/bib/bbw128 [DOI: 10.1093/bib/bbw128]
  160. Raza A, Razzaq A, Mehmood S et al (2018) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34. https://doi.org/10.1093/bib/bbw128 [DOI: 10.1093/bib/bbw128]
  161. Reimand J, Isserlin R, Voisin V et al (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, cytoscape and EnrichmentMap. Nat Protoc 14:482–517. https://doi.org/10.1038/s41596-018-0103-9 [DOI: 10.1038/s41596-018-0103-9]
  162. Rhee SY, Mutwil M (2014) Towards revealing the functions of all genes in plants. Trends Plant Sci 19:212–221. https://doi.org/10.1016/j.tplants.2013.10.006 [DOI: 10.1016/j.tplants.2013.10.006]
  163. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinform 13:278–289. https://doi.org/10.1016/j.gpb.2015.08.002 [DOI: 10.1016/j.gpb.2015.08.002]
  164. Rhrissorrakrai K, Gunsalus KC (2016) Erratum to: MINE: module identification in networks. BMC Bioinform 17:89. https://doi.org/10.1186/s12859-016-0929-5 [DOI: 10.1186/s12859-016-0929-5]
  165. Robertson SM, Wilkins O (2023) Spatially resolved gene regulatory networks in Asian rice (Oryza sativa cv. Nipponbare) leaves. Plant J 116:269–281. https://doi.org/10.1111/tpj.16375 [DOI: 10.1111/tpj.16375]
  166. Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA et al (2019) Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med 43:1559–1574. https://doi.org/10.3892/ijmm.2019.4112 [DOI: 10.3892/ijmm.2019.4112]
  167. Rodriques SG, Stickels RR, Goeva A et al (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–1467. https://doi.org/10.1126/science.aaw1219 [DOI: 10.1126/science.aaw1219]
  168. Rönspies M, Schindele P, Puchta H (2021) CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. J Exp Bot 72:177–183. https://doi.org/10.1093/jxb/eraa463 [DOI: 10.1093/jxb/eraa463]
  169. Rosenberg AB, Roco CM, Muscat RA et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–182. https://doi.org/10.1126/science.aam8999 [DOI: 10.1126/science.aam8999]
  170. Rosenski J, Shifman S, Kaplan T (2023) Predicting gene knockout effects from expression data. BMC Med Genomics 16:26. https://doi.org/10.1186/s12920-023-01446-6 [DOI: 10.1186/s12920-023-01446-6]
  171. Russo PST, Ferreira GR, Cardozo LE et al (2018) CEMiTool: a bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinformatics 19:56. https://doi.org/10.1186/s12859-018-2053-1 [DOI: 10.1186/s12859-018-2053-1]
  172. Saelens W, Cannoodt R, Saeys Y (2018) A comprehensive evaluation of module detection methods for gene expression data. Nat Commun 9:1090. https://doi.org/10.1038/s41467-018-03424-4 [DOI: 10.1038/s41467-018-03424-4]
  173. Saijo Y, Loo EP (2020) Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225:87–104. https://doi.org/10.1111/nph.15989 [DOI: 10.1111/nph.15989]
  174. Sandhya D, Jogam P, Allini VR et al (2020) The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotechnol 18:25. https://doi.org/10.1186/s43141-020-00036-8 [DOI: 10.1186/s43141-020-00036-8]
  175. Santosh Kumar VV, Verma RK, Yadav SK et al (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110. https://doi.org/10.1007/s12298-020-00819-w [DOI: 10.1007/s12298-020-00819-w]
  176. Sapoval N, Aghazadeh A, Nute MG et al (2022) Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 13:1728. https://doi.org/10.1038/s41467-022-29268-7 [DOI: 10.1038/s41467-022-29268-7]
  177. Satam H, Joshi K, Mangrolia U et al (2023) Next-generation sequencing technology: current trends and advancements. Biology (Basel) 12:997. https://doi.org/10.3390/biology12070997 [DOI: 10.3390/biology12070997]
  178. Savino A, Provero P, Poli V (2020) Differential co-expression analyses allow the identification of critical signalling pathways altered during tumour transformation and progression. Int J Mol Sci 21:9461. https://doi.org/10.3390/ijms21249461 [DOI: 10.3390/ijms21249461]
  179. Sedeek KEM, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114. https://doi.org/10.3389/fpls.2019.00114 [DOI: 10.3389/fpls.2019.00114]
  180. Serin EA, Nijveen H, Hilhorst HW et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. https://doi.org/10.3389/fpls.2016.00444 [DOI: 10.3389/fpls.2016.00444]
  181. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 [DOI: 10.1101/gr.1239303]
  182. Shao A, Wang W, Fan S et al (2021) Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biol 21:175. https://doi.org/10.1186/s12870-021-02939-1 [DOI: 10.1186/s12870-021-02939-1]
  183. Sharma N, Madan B, Khan MS et al (2023) Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. Front Plant Sci 14:1135675. https://doi.org/10.3389/fpls.2023.1135675 [DOI: 10.3389/fpls.2023.1135675]
  184. Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603 [DOI: 10.1111/pbi.12603]
  185. Singh R, Kaur N, Praba UP et al (2022) A prospective review on selectable marker-free genome engineered rice: past, present and future scientific realm. Front Genet 13:882836. https://doi.org/10.3389/fgene.2022.882836 [DOI: 10.3389/fgene.2022.882836]
  186. Skerrett-Byrne Anthony D, Jiang Chen C, Nixon B, Hondermarck H (2023) Transcriptomics. In: Bradshaw RA et al (eds) Encyclopedia of Cell Biology, 2nd edn. Elsevier, Netherlands, pp 363–371. https://doi.org/10.1016/B978-0-12-821618-7.00157-7 [DOI: 10.1016/B978-0-12-821618-7.00157-7]
  187. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328. https://doi.org/10.1186/1471-2105-13-328 [DOI: 10.1186/1471-2105-13-328]
  188. Song Q, Lee J, Akter S et al (2020) Prediction of condition-specific regulatory genes using machine learning. Nucleic Acids Res 48:e62. https://doi.org/10.1093/nar/gkaa264 [DOI: 10.1093/nar/gkaa264]
  189. Srivastava A, George J, Karuturi RKM (2019) Transcriptome analysis. In: Ranganathan S et al (eds) Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1st edn. Elsevier, Netherlands, pp 792–805. https://doi.org/10.1016/B978-0-12-809633-8.20161-1 [DOI: 10.1016/B978-0-12-809633-8.20161-1]
  190. Su Z, Fang H, Hong H et al (2014) An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol 15:523. https://doi.org/10.1186/s13059-014-0523-y [DOI: 10.1186/s13059-014-0523-y]
  191. Surówka E, Rapacz M, Janowiak F (2020) Climate Change Influences the Interactive Effects of Simultaneous Impact of Abiotic and Biotic Stresses on Plants. In: Hasanuzzaman M (ed) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I, 1st edn. Springer, Singapore, pp 1–50. https://doi.org/10.1007/978-981-15-2156-0_1 [DOI: 10.1007/978-981-15-2156-0_1]
  192. Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51:D638–D646. https://doi.org/10.1093/nar/gkac1000 [DOI: 10.1093/nar/gkac1000]
  193. Takehisa H, Sato Y, Antonio B et al (2014) Coexpression network analysis of macronutrient deficiency response genes in rice. Rice (n y) 8:59. https://doi.org/10.1186/s12284-015-0059-0 [DOI: 10.1186/s12284-015-0059-0]
  194. Tamizi AA, Md-Yusof AA, Mohd-Zim NA et al (2023) Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice. Mol Biol Rep 50:9353–9366. https://doi.org/10.1007/s11033-023-08842-2 [DOI: 10.1007/s11033-023-08842-2]
  195. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315 [DOI: 10.1038/nmeth.1315]
  196. Tian R, Jiang J, Bo S et al (2023) Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC Plant Biol 23:191. https://doi.org/10.1186/s12870-023-04188-w [DOI: 10.1186/s12870-023-04188-w]
  197. Todd EV, Black MA, Gemmell NJ (2016) The power and promise of RNA-seq in ecology and evolution. Mol Ecol 25:1224–1241. https://doi.org/10.1111/mec.13526 [DOI: 10.1111/mec.13526]
  198. Tolani P, Gupta S, Yadav K (2021) Big data, integrative omics and network biology. Adv Protein Chem Struct Biol 127:127–160. https://doi.org/10.1016/bs.apcsb.2021.03.006 [DOI: 10.1016/bs.apcsb.2021.03.006]
  199. Tornielli GB, Sandri M, Fasoli M (2023) A molecular phenology scale of grape berry development. Hortic Res 10:uhad048. https://doi.org/10.1093/hr/uhad048 [DOI: 10.1093/hr/uhad048]
  200. Tripathi LP, Chen YA, Mizuguchi K et al (2019) Network-Based Analysis for Biological Discovery. In: Ranganathan S (ed) Encyclopedia of Bioinformatics and Computational Biology, 1st edn. Elsevier, Netherlands, pp 283–291 [DOI: 10.1016/B978-0-12-809633-8.20674-2]
  201. Tripathi JN, Ntui VO, Shah T, Tripathi L (2021) CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J 19:1291–1293. https://doi.org/10.1111/pbi.13614 [DOI: 10.1111/pbi.13614]
  202. Tu X, Mejía-Guerra MK, Valdes Franco JA et al (2020) Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun 11:5089. https://doi.org/10.1038/s41467-020-18832-8 [DOI: 10.1038/s41467-020-18832-8]
  203. Tung CC, Kuo SC, Yang CL et al (2023) Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 24:3. https://doi.org/10.1186/s13059-022-02845-1 [DOI: 10.1186/s13059-022-02845-1]
  204. Tyagi S, Kumar R, Das A et al (2020) CRISPR-Cas9 system: a genome-editing tool with endless possibilities. J Biotechnol 319:36–53. https://doi.org/10.1016/j.jbiotec.2020.05.008 [DOI: 10.1016/j.jbiotec.2020.05.008]
  205. Tyagi P, Singh D, Mathur S et al (2022) Upcoming progress of transcriptomics studies on plants: an overview. Front Plant Sci 13:1030890. https://doi.org/10.3389/fpls.2022.1030890 [DOI: 10.3389/fpls.2022.1030890]
  206. Ullah MA, Abdullah-Zawawi MR, Zainal-Abidin RA et al (2022) Review of integrative omic approaches for understanding rice salt response mechanisms. Plants (Basel) 11:1430. https://doi.org/10.3390/plants11111430 [DOI: 10.3390/plants11111430]
  207. Uluisik S, Chapman NH, Smith R et al (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34:950–952. https://doi.org/10.1038/nbt.3602 [DOI: 10.1038/nbt.3602]
  208. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651. https://doi.org/10.1111/j.1365-3040.2009.02040.x [DOI: 10.1111/j.1365-3040.2009.02040.x]
  209. Utriainen M, Morris JH (2023) clusterMaker2: a major update to clusterMaker, a multi-algorithm clustering app for Cytoscape. BMC Bioinformatics 24:134. https://doi.org/10.1186/s12859-023-05225-z [DOI: 10.1186/s12859-023-05225-z]
  210. van Dam S, Võsa U, van der Graaf A et al (2018) Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 19:575–592. https://doi.org/10.1093/bib/bbw139 [DOI: 10.1093/bib/bbw139]
  211. van Dijk ADJ, Kootstra G, Kruijer W et al (2020) Machine learning in plant science and plant breeding. iScience 24:101890. https://doi.org/10.1016/j.isci.2020.101890 [DOI: 10.1016/j.isci.2020.101890]
  212. Van den Broeck L, Gordon M, Inzé D, Williams C, Sozzani R (2020) Gene regulatory network inference: connecting plant biology and mathematical modeling. Front Genet 11:457. https://doi.org/10.3389/fgene.2020.00457 [DOI: 10.3389/fgene.2020.00457]
  213. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998. https://doi.org/10.1016/j.cell.2011.02.016 [DOI: 10.1016/j.cell.2011.02.016]
  214. Vlčko T, Ohnoutková L (2020) Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in barley. Plants (Basel) 9:195. https://doi.org/10.3390/plants9020195 [DOI: 10.3390/plants9020195]
  215. Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. https://doi.org/10.1038/nrg3049 [DOI: 10.1038/nrg3049]
  216. Wang L (2021) Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr. Nat Commun 12:6395. https://doi.org/10.1038/s41467-021-26682-1 [DOI: 10.1038/s41467-021-26682-1]
  217. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484 [DOI: 10.1038/nrg2484]
  218. Wang C, Gong B, Bushel PR et al (2014) The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol 32:926–932. https://doi.org/10.1038/nbt.3001 [DOI: 10.1038/nbt.3001]
  219. Wang J, Zhong J, Chen G et al (2015a) ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Trans Comput Biol Bioinform 12:815–822. https://doi.org/10.1109/tcbb.2014.2361348 [DOI: 10.1109/tcbb.2014.2361348]
  220. Wang Y, Liu J, Huang BO et al (2015b) Mechanism of alternative splicing and its regulation. Biomed Rep 3:152–158. https://doi.org/10.3892/br.2014.407 [DOI: 10.3892/br.2014.407]
  221. Wang B, Kumar V, Olson A et al (2019a) Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front Genet 10:384. https://doi.org/10.3389/fgene.2019.00384 [DOI: 10.3389/fgene.2019.00384]
  222. Wang J, Agarwal D, Huang M et al (2019b) Data denoising with transfer learning in single-cell transcriptomics. Nat Methods 16:875–878. https://doi.org/10.1038/s41592-019-0537-1 [DOI: 10.1038/s41592-019-0537-1]
  223. Wang FX, Shang GD, Wu LY et al (2020) Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev Cell 54:742-757.e8. https://doi.org/10.1016/j.devcel.2020.07.003 [DOI: 10.1016/j.devcel.2020.07.003]
  224. Wang G, Li X, An Y, Zhang J et al (2021a) Transient ChIP-seq for genome-wide in vivo DNA binding landscape. Trends Plant Sci 26:524–525. https://doi.org/10.1016/j.tplants.2020.12.002 [DOI: 10.1016/j.tplants.2020.12.002]
  225. Wang J, Li Y, Wu T et al (2021b) Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. Funct Plant Biol 48:1087–1099. https://doi.org/10.1071/fp20368 [DOI: 10.1071/fp20368]
  226. Wang Y, Huan Q, Li K et al (2021c) Single-cell transcriptome atlas of the leaf and root of rice seedlings. J Genet Genomics 48:881–898. https://doi.org/10.1016/j.jgg.2021.06.001 [DOI: 10.1016/j.jgg.2021.06.001]
  227. Wang Y, Zhao Y, Bollas A et al (2021d) Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39:1348–1365. https://doi.org/10.1038/s41587-021-01108-x [DOI: 10.1038/s41587-021-01108-x]
  228. Wang Y, Zhou M, Zou Q et al (2021) Machine learning for phytopathology: from the molecular scale towards the network scale. Brief Bioinform 22:bbab037. https://doi.org/10.1093/bib/bbab037 [DOI: 10.1093/bib/bbab037]
  229. Wang Z, Cheng D, Fan C et al (2021f) Cell type-specific differentiation between indica and japonica rice root tip responses to different environments based on single-cell RNA sequencing. Front Genet 12:659500. https://doi.org/10.3389/fgene.2021.659500 [DOI: 10.3389/fgene.2021.659500]
  230. Wang Y, Wang Y, Liu X et al (2022) WGCNA analysis identifies the hub genes related to heat stress in seedling of rice (Oryza sativa L.). Genes (Basel) 13:1020. https://doi.org/10.3390/genes13061020 [DOI: 10.3390/genes13061020]
  231. Wang M, Hong W, Wang Y et al (2023) Identification, characterization and expression analysis of wheat RSH family genes under abiotic stress. Front Plant Sci 14:1283567. https://doi.org/10.3389/fpls.2023.1283567 [DOI: 10.3389/fpls.2023.1283567]
  232. Wang H, Xu Y, Zhang Z et al (2024) Development and application of transcriptomics technologies in plant science. Crop Design 3:100057. https://doi.org/10.1016/j.cropd.2024.100057 [DOI: 10.1016/j.cropd.2024.100057]
  233. Wekesa JS, Meng J, Luan Y (2020) Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics 112:2928–2936. https://doi.org/10.1016/j.ygeno.2020.05.005 [DOI: 10.1016/j.ygeno.2020.05.005]
  234. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513. https://doi.org/10.1126/science.1239402 [DOI: 10.1126/science.1239402]
  235. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257. https://doi.org/10.1016/j.ymeth.2009.03.016 [DOI: 10.1016/j.ymeth.2009.03.016]
  236. Wimalagunasekara SS, Weeraman JWJK, Tirimanne S et al (2023) Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). J Genet Eng Biotechnol 21:69. https://doi.org/10.1186/s43141-023-00515-8 [DOI: 10.1186/s43141-023-00515-8]
  237. Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70. https://doi.org/10.1007/s40484-014-0030-x [DOI: 10.1007/s40484-014-0030-x]
  238. Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305. https://doi.org/10.1093/nar/30.1.303 [DOI: 10.1093/nar/30.1.303]
  239. Xia K, Sun HX, Li J et al (2022) The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell 57:1299-1310.e4. https://doi.org/10.1016/j.devcel.2022.04.011 [DOI: 10.1016/j.devcel.2022.04.011]
  240. Xiao X, Moreno-Moral A, Rotival M et al (2014) Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules. PLoS Genet 10:e1004006. https://doi.org/10.1371/journal.pgen.1004006 [DOI: 10.1371/journal.pgen.1004006]
  241. Xie J, Fei X, Yan Q et al (2024) The C4 photosynthesis bifunctional enzymes, PDRPs, of maize are co-opted to cytoplasmic viral replication complexes to promote infection of a prevalent potyvirus sugarcane mosaic virus. Plant Biotechnol J 22:1812–1832. https://doi.org/10.1111/pbi.14304 [DOI: 10.1111/pbi.14304]
  242. Xin X, Du F, Jiao Y (2023) Plant nuclei isolation for single-nucleus RNA sequencing. Methods Mol Biol 2686:307–311. https://doi.org/10.1007/978-1-0716-3299-4_15 [DOI: 10.1007/978-1-0716-3299-4_15]
  243. Xu C, Jackson SA (2019) Machine learning and complex biological data. Genome Biol 20:76. https://doi.org/10.1186/s13059-019-1689-0 [DOI: 10.1186/s13059-019-1689-0]
  244. Xu Y, Li Z (2020) CRISPR-cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 18:2401–2415. https://doi.org/10.1016/j.csbj.2020.08.031 [DOI: 10.1016/j.csbj.2020.08.031]
  245. Yan J, Wang X (2023) Machine learning bridges omics sciences and plant breeding. Trends Plant Sci 28:199–210. https://doi.org/10.1016/j.tplants.2022.08.018 [DOI: 10.1016/j.tplants.2022.08.018]
  246. Yan J, Risacher SL, Shen L et al (2018) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19:1370–1381. https://doi.org/10.1093/bib/bbx066 [DOI: 10.1093/bib/bbx066]
  247. Yan H, Lee J, Song Q et al (2022) Identification of new marker genes from plant single-cell RNA-seq data using interpretable machine learning methods. New Phytol 234:1507–1520. https://doi.org/10.1111/nph.18053 [DOI: 10.1111/nph.18053]
  248. Yang D, Zhu X, Yan C et al (2021a) Joint hub identification for brain networks by multivariate graph inference. Med Image Anal 73:102162. https://doi.org/10.1016/j.media.2021.102162 [DOI: 10.1016/j.media.2021.102162]
  249. Yang Y, Saand MA, Huang L et al (2021b) Applications of multi-omics technologies for crop improvement. Front Plant Sci 12:563953. https://doi.org/10.3389/fpls.2021.563953 [DOI: 10.3389/fpls.2021.563953]
  250. Yao J, Ling Y, Hou P et al (2023) A graph neural network model for deciphering the biological mechanisms of plant electrical signal classification. Appl Soft Comput 137:110153. https://doi.org/10.1016/j.asoc.2023.110153 [DOI: 10.1016/j.asoc.2023.110153]
  251. Yasmeen A, Shakoor S, Azam S et al (2022) CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. Planta 256:107. https://doi.org/10.1007/s00425-022-04022-x [DOI: 10.1007/s00425-022-04022-x]
  252. Ye W, Hossain R, Pröbsting M et al (2024) Knock-out of BnHva22c reduces the susceptibility of Brassica napus to infection with the fungal pathogen verticillium longisporum. Crop J 12:503–514. https://doi.org/10.1016/j.cj.2024.02.012 [DOI: 10.1016/j.cj.2024.02.012]
  253. Yin W, Mendoza L, Monzon-Sandoval J et al (2021) Emergence of co-expression in gene regulatory networks. PLoS One 16:e0247671. https://doi.org/10.1371/journal.pone.0247671 [DOI: 10.1371/journal.pone.0247671]
  254. Yin R, Xia K, Xu X (2023) Spatial transcriptomics drives a new era in plant research. Plant J 116:1571–1581. https://doi.org/10.1111/tpj.16437 [DOI: 10.1111/tpj.16437]
  255. Yu Y, Pan Z, Wang X et al (2022) Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease. Mol Plant Pathol 23:104–117. https://doi.org/10.1111/mpp.13146 [DOI: 10.1111/mpp.13146]
  256. Yu X, Liu Z, Sun X (2023) Single-cell and spatial multi-omics in the plant sciences: technical advances, applications, and perspectives. Plant Commun 4:100508. https://doi.org/10.1016/j.xplc.2022.100508 [DOI: 10.1016/j.xplc.2022.100508]
  257. Zainal-Abidin RA, Harun S, Vengatharajuloo V et al (2022) Gene co-expression network tools and databases for crop improvement. Plants (Basel) 11:1625. https://doi.org/10.3390/plants11131625 [DOI: 10.3390/plants11131625]
  258. Zainuddin Z, Mohd-Zim NA, Ahmad Azmi NS et al (2021) Genome editing for the development of rice resistance against stresses: a review. Pertanika J Trop Agric Sci. https://doi.org/10.47836/pjtas.44.3.06 [DOI: 10.47836/pjtas.44.3.06]
  259. Zhan X, Liu W, Nie B et al (2023) Cas13d-mediated multiplex RNA targeting confers a broad-spectrum resistance against RNA viruses in potato. Commun Biol 6:855. https://doi.org/10.1038/s42003-023-05205-2 [DOI: 10.1038/s42003-023-05205-2]
  260. Zhang S, Zhao H, Ng MK (2015) Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans Comput Biol Bioinform 12:1146–1160. https://doi.org/10.1109/TCBB.2015.2396073 [DOI: 10.1109/TCBB.2015.2396073]
  261. Zhang R, Zhang C, Yu C et al (2022) Integration of multi-omics technologies for crop improvement: status and prospects. Front Bioinform 2:1027457. https://doi.org/10.3389/fbinf.2022.1027457 [DOI: 10.3389/fbinf.2022.1027457]
  262. Zhang J, Lyu H, Chen J et al (2024) Releasing a sugar brake generates sweeter tomato without yield penalty. Nature. https://doi.org/10.1038/s41586-024-08186-2 [DOI: 10.1038/s41586-024-08186-2]
  263. Zhao S, Fung-Leung WP, Bittner A et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644. https://doi.org/10.1371/journal.pone.0078644 [DOI: 10.1371/journal.pone.0078644]
  264. Zheng S, Ye C, Lu J et al (2021) Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. Int J Mol Sci 22:9554. https://doi.org/10.3390/ijms22179554 [DOI: 10.3390/ijms22179554]
  265. Zheng D, Xu J, Lu Y (2023) Recent progresses in plant single-cell transcriptomics. Crop Design 2:100041. https://doi.org/10.1016/j.cropd.2023.100041 [DOI: 10.1016/j.cropd.2023.100041]
  266. Zhou L, Huang Y, Wang Q et al (2021a) AaHY5 ChIP-seq based on transient expression system reveals the role of AaWRKY14 in artemisinin biosynthetic gene regulation. Plant Physiol Biochem 168:321–328. https://doi.org/10.1016/j.plaphy.2021.10.010 [DOI: 10.1016/j.plaphy.2021.10.010]
  267. Zhou WM, Yan YY, Guo QR et al (2021b) Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnol 19:312. https://doi.org/10.1186/s12951-021-01045-6 [DOI: 10.1186/s12951-021-01045-6]
  268. Zhu M, Xie H, Wei X et al (2019) WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes (Basel) 10:719. https://doi.org/10.3390/genes10090719 [DOI: 10.3390/genes10090719]
  269. Zinani OQH, Keseroğlu K, Özbudak EM (2022) Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 38:73–81. https://doi.org/10.1016/j.tig.2021.07.008 [DOI: 10.1016/j.tig.2021.07.008]
  270. Zinati Z, Sazegari S, Amin H et al (2021) Mining transcriptome data to identify genes and pathways related to lemon taste using supervised and unsupervised data learning methods. Hortic Environ Biotechnol 62:593–603. https://doi.org/10.1007/s13580-021-00337-y [DOI: 10.1007/s13580-021-00337-y]

Grants

  1. GUP-2021-044/Universiti Kebangsaan Malaysia

MeSH Term

Crops, Agricultural
Gene Editing
Transcriptome
Stress, Physiological
Machine Learning
Plant Breeding
Gene Regulatory Networks
Gene Expression Profiling
Climate Change

Word Cloud

Created with Highcharts 10.0.0biologynetworkeditingdatagenesmachinelearninggenecantranscriptomicsgenomecropsstressescombinedplantstressBigdiscoveryviaclimatechangeemployedlimitationsTranscriptomicstargetintegrationinsightsbiologicalnovelMAINCONCLUSION:inferfunctionalcouplingcombinationdramaticallyacceleratepaceusingmodernapproachesvalidatedtechnologyimprovingUnlikelivingthingsplantssessilefrequentlyfacevariousenvironmentalchallengesduecumulativeeffectssignificantlyinfluencegrowthyieldsnavigatingcomplexitiesensuringnourishmentgrowingpopulationhingesimplementingpreciseagriculturalsystemsConventionalbreedingmethodscommonlyhoweverefficacyimpededtermstimecostinfrastructureCutting-edgetoolsfocussingbigchampionedusherneweraaimingcultivateexhibitenhancedresiliencemultifactorialprovingpowerfulapproachidentifyingpotentialspecificallyenhancetolerancetranscriptomicyieldsignificantbenefitsgainingfunctionmodifyingmanipulatingspecificreviewprovidesvaluableuseplatformsapplicationanalysistherebyenhancingunderstandingresponsessequentialforefrontomicsplatformnetworksleaddiscoveriesproducingmulti-stress-tolerantfuturedirectionsalsodiscussedAcceleratingcropimprovementtranscriptome-basedCropmanagementGenomeNetwork

Similar Articles

Cited By

No available data.