Charge-transfer dynamics in S-scheme photocatalyst.

Liuyang Zhang, Jianjun Zhang, Jiaguo Yu, Hermenegildo Garc��a
Author Information
  1. Liuyang Zhang: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, P. R. China. ORCID
  2. Jianjun Zhang: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, P. R. China. ORCID
  3. Jiaguo Yu: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, P. R. China. yujiaguo93@cug.edu.cn. ORCID
  4. Hermenegildo Garc��a: Instituto Universitario de Tecnolog��a Qu��mica, (CSIC-UPV), Universitat Polit��cnica de Val��ncia, Valencia, Spain. hgarcia@qim.upv.es. ORCID

Abstract

Natural photosynthesis represents the pinnacle that green chemistry aims to achieve. Photocatalysis, inspired by natural photosynthesis and dating back to 1911, has been revitalized, offering promising solutions to critical energy and environmental challenges facing society today. As such, it represents an important research avenue in contemporary chemical science. However, single photocatalytic materials often suffer from the rapid recombination of photogenerated electrons and holes, resulting in poor performance. S-scheme heterojunctions have emerged as a general method to enhance charge transfer and separation, thereby greatly improving photocatalytic efficiencies. This Perspective delves into the electron transfer dynamics in S-scheme heterojunctions, providing a comprehensive overview of their development and key characterization techniques, such as femtosecond transient absorption spectroscopy, in situ irradiated X-ray photoelectron spectroscopy and Kelvin probe force microscopy. By addressing a critical research gap, this work aims to trigger further understanding and advances in photo-induced charge-transfer processes, thereby contributing to green chemistry and the United Nations sustainable development goals.

References

  1. Chen, P. et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612, 546���554 (2022). [>PMCID: ]
  2. Fang, S. et al. Photocatalytic CO reduction. Nat. Rev. Methods Primers 3, 61 (2023). [DOI: 10.1038/s43586-023-00243-w]
  3. Nishioka, S., Osterloh, F. E., Wang, X., Mallouk, T. E. & Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Primers 3, 42 (2023). [DOI: 10.1038/s43586-023-00226-x]
  4. Heyes, D. J. et al. Photocatalysis as the ���master switch��� of photomorphogenesis in early plant development. Nat. Plants 7, 268���276 (2021). [DOI: 10.1038/s41477-021-00866-5]
  5. Li, X., Wang, C. & Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617���632 (2022). [DOI: 10.1038/s41578-022-00422-3]
  6. Cheng, C. et al. In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation. Nat. Commun. 15, 1313 (2024). [>PMCID: ]
  7. Zhou, P., Luo, M. & Guo, S. Optimizing the semiconductor���metal-single-atom interaction for photocatalytic reactivity. Nat. Rev. Chem. 6, 823���838 (2022). [DOI: 10.1038/s41570-022-00434-1]
  8. Cheng, C. et al. Catalytic conversion of styrene to benzaldehyde over S-scheme photocatalysts by singlet oxygen. ACS Catal. 13, 459���468 (2023). [DOI: 10.1021/acscatal.2c05001]
  9. Huang, Z., Luo, N., Zhang, C. & Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 6, 197���214 (2022). [DOI: 10.1038/s41570-022-00359-9]
  10. Mohapatra, L. & Yoo, S. H. New reaction pathway induced by N-deficient conjugated polymer-supported bimetallic oxide quantum dot S-scheme heterojunction for benzyl alcohol oxidation in water. Mater. Today Energy 35, 101331 (2023). [DOI: 10.1016/j.mtener.2023.101331]
  11. Dash, S. et al. A visible light-driven ��-MnO/UiO-66-NH S-scheme photocatalyst toward ameliorated Oxy-TCH degradation and H evolution. Langmuir 40, 4514���4530 (2024). [DOI: 10.1021/acs.langmuir.3c04050]
  12. Dang, V. D. et al. S-scheme N-doped carbon dots anchored g-CN/FeO shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting. Appl. Catal. B Environ. 320, 121928 (2023). [DOI: 10.1016/j.apcatb.2022.121928]
  13. Xi, Y. et al. Nanoarchitectonics of S-scheme heterojunction photocatalysts: a nanohouse design improves photocatalytic nitrate reduction to ammonia performance. Angew. Chem. Int. Ed. 63, e202409163 (2024). [DOI: 10.1002/anie.202409163]
  14. Zheng, Z. et al. Directional separation of highly reductive electrons to the reactive center in a magnetic S-scheme ZnFeO/A-MoS heterojunction for enhanced peroxymonosulfate activation toward pharmaceuticals and personal care product removal. Environ. Sci. Technol. 57, 8414���8425 (2023). [DOI: 10.1021/acs.est.2c09122]
  15. Bonchio, M. et al. Best practices for experiments and reporting in photocatalytic CO reduction. Nat. Catal. 6, 657���665 (2023). [DOI: 10.1038/s41929-023-00992-7]
  16. Vennapoosa, C. S. et al. S-scheme ZIF-67/CuFe-LDH heterojunction for high-performance photocatalytic H evolution and CO to MeOH production. Inorg. Chem. 62, 16451���16463 (2023). [DOI: 10.1021/acs.inorgchem.3c02126]
  17. Pan, J., Zhang, A., Zhang, L. & Dong, P. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS for efficient photocatalytic H production. Chin. J. Catal. 58, 180���193 (2024). [DOI: 10.1016/S1872-2067(23)64609-1]
  18. Bariki, R. et al. Hierarchical UiO-66(���NH)/CuInS S-scheme photocatalyst with controlled topology for enhanced photocatalytic N fixation and HO production. Langmuir 39, 7707���7722 (2023). [DOI: 10.1021/acs.langmuir.3c00519]
  19. Gu, M. et al. Efficient sacrificial-agent-free solar HO production over all-inorganic S-scheme composites. Appl. Catal. B Environ. 324, 122227 (2023). [DOI: 10.1016/j.apcatb.2022.122227]
  20. Bao, T. et al. Highly efficient nitrogen fixation over S-scheme heterojunction photocatalysts with enhanced active hydrogen supply. Natl. Sci. Rev. 11, nwae093 (2024). [>PMCID: ]
  21. Pournemati, K., Habibi-Yangjeh, A. & Khataee, A. Incorporation of CuFeS QDs with abundant oxygen vacancy TiO QDs/TiO OVs: double S-scheme photocatalysts for effectual N conversion to NH under simulated solar light. Inorg. Chem. 63, 6957���6971 (2024). [DOI: 10.1021/acs.inorgchem.4c00440]
  22. Su, B. et al. S-scheme CoS@CdZnS-DETA hierarchical nanocages bearing organic CO activators for photocatalytic syngas production. Adv. Energy Mater. 13, 2203290 (2023). [DOI: 10.1002/aenm.202203290]
  23. Manna, R., Bhattacharya, G., Sardar, P., Rahut, S. & Samanta, A. N. Photocatalytic performance and mechanism insights of an S-scheme ZnMnO/ZIF-67 heterostructure in photocatalytic CO reduction under visible light irradiation. Renew. Energy 229, 120752 (2024). [DOI: 10.1016/j.renene.2024.120752]
  24. Zhang, H. et al. Metal sulfide S-scheme homojunction for photocatalytic selective phenylcarbinol oxidation. Adv. Sci. 11, 2400099 (2024). [DOI: 10.1002/advs.202400099]
  25. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m scale. Nature 598, 304���307 (2021). [DOI: 10.1038/s41586-021-03907-3]
  26. Liao, H. et al. Harnessing the synergistic power of CeS/TiO S-scheme heterojunctions for profound C���O bond cleavage in lignin model compounds. ACS Catal. 14, 5539���5549 (2024). [DOI: 10.1021/acscatal.4c00297]
  27. Ruan, X. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 35, 2209141 (2023). [DOI: 10.1002/adma.202209141]
  28. Rahman, M. Z., Edvinsson, T. & Gascon, J. Hole utilization in solar hydrogen production. Nat. Rev. Chem. 6, 243���258 (2022). [DOI: 10.1038/s41570-022-00366-w]
  29. Xia, B. et al. TiO/FePS S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 12, 2201449 (2022). [DOI: 10.1002/aenm.202201449]
  30. He, Y. et al. Boosting artificial photosynthesis: CO chemisorption and S-scheme charge separation via anchoring inorganic QDs on COFs. ACS Catal. 14, 1951���1961 (2024). [DOI: 10.1021/acscatal.4c00026]
  31. Hu, P. et al. Highly selective photoconversion of CO to CH over SnO/CsBiBr heterojunctions assisted by S-scheme charge separation. ACS Catal. 13, 12623���12633 (2023). [DOI: 10.1021/acscatal.3c03095]
  32. Zhang, M. et al. Coupling benzylamine oxidation with CO photoconversion to ethanol over a black phosphorus and bismuth tungstate S-scheme heterojunction. Angew. Chem. Int. Ed. 62, e202302919 (2023). [DOI: 10.1002/anie.202302919]
  33. Gao, Z. et al. Interfacial Ti���S bond modulated S-scheme MOF/covalent triazine framework nanosheet heterojunctions for photocatalytic C���H functionalization. Angew. Chem. Int. Ed. 62, e202304173 (2023). [DOI: 10.1002/anie.202304173]
  34. Xu, F. et al. Step-by-step mechanism insights into the TiO/CeS S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 12, 164���172 (2022). [DOI: 10.1021/acscatal.1c04903]
  35. Zhu, Z. et al. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium���oxygen battery. Angew. Chem. Int. Ed. 61, e202116699 (2022). [DOI: 10.1002/anie.202116699]
  36. Wang, X. et al. Unique step-scheme heterojunction photoelectrodes for dual-utilization of light and chemical neutralization energy in switchable dual-mode batteries. Adv. Funct. Mater. 32, 2205518 (2022). [DOI: 10.1002/adfm.202205518]
  37. Liu, M. et al. Anisotropic dual S-scheme heterojunctions mimic natural photosynthetic system for boosting photoelectric response. Angew. Chem. Int. Ed. 63, e202407481 (2024). [DOI: 10.1002/anie.202407481]
  38. Onjwaya, A. O., Malati, M. L., Ngila, J. C. & Dlamini, L. N. Interfacial engineering of a multijunctional InO/WO@TiNT S-scheme photocatalyst with enhanced photoelectrochemical properties. Dalton Trans. 53, 7694���7710 (2024). [DOI: 10.1039/D4DT00135D]
  39. Yue, X., Cheng, L., Fan, J. & Xiang, Q. 2D/2D BiVO/CsPbBr S-scheme heterojunction for photocatalytic CO reduction: insights into structure regulation and Fermi level modulation. Appl. Catal. B Environ. 304, 120979 (2022). [DOI: 10.1016/j.apcatb.2021.120979]
  40. Das, K. K., Mansingh, S., Sahoo, D. P., Mohanty, R. & Parida, K. Engineering an oxygen-vacancy-mediated step-scheme charge carrier dynamic coupling WO/ZnFeO heterojunction for robust photo-Fenton-driven levofloxacin detoxification. New J. Chem. 46, 5785���5798 (2022). [DOI: 10.1039/D2NJ00067A]
  41. Khan, I. et al. Dimensionally intact construction of ultrathin S-scheme CuFeO/ZnInS heterojunctional photocatalysts for CO photoreduction. Inorg. Chem. 63, 14004���14020 (2024). [DOI: 10.1021/acs.inorgchem.4c01566]
  42. Fu, J., Xu, Q., Low, J., Jiang, C. & Yu, J. Ultrathin 2D/2D WO/g-CN step-scheme H-production photocatalyst. Appl. Catal. B Environ. 243, 556���565 (2019). [DOI: 10.1016/j.apcatb.2018.11.011]
  43. Xu, Q., Zhang, L., Cheng, B., Fan, J. & Yu, J. S-scheme heterojunction photocatalyst. Chem 6, 1543���1559 (2020). [DOI: 10.1016/j.chempr.2020.06.010]
  44. He, H. et al. Interface chemical bond enhanced ions intercalated carbon nitride/CdSe-diethylenetriamine S-scheme heterojunction for photocatalytic HO synthesis in pure water. Adv. Funct. Mater. 34, 2315426 (2024). [DOI: 10.1002/adfm.202315426]
  45. Wang, Y. et al. Roles of catalyst structure and gas surface reaction in the generation of hydroxyl radicals for photocatalytic oxidation. ACS Catal. 12, 2770���2780 (2022). [DOI: 10.1021/acscatal.1c05447]
  46. Zhang, B., Sun, B., Liu, F., Gao, T. & Zhou, G. TiO-based S-scheme photocatalysts for solar energy conversion and environmental remediation. Sci. China Mater. 67, 424���443 (2024). [DOI: 10.1007/s40843-023-2754-8]
  47. Low, J., Yu, J., Jaroniec, M., Wageh, S. & Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017). [DOI: 10.1002/adma.201601694]
  48. Serpone, N., Borgarello, E. & Gr��tzel, M. Visible light induced generation of hydrogen from HS in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J. Chem. Soc. Chem. Commun. 342���344 (1984).
  49. Li, F., Fang, Z., Xu, Z. & Xiang, Q. The confusion about S-scheme electron transfer: critical understanding and a new perspective. Energy Environ. Sci. 17, 497���509 (2024). [DOI: 10.1039/D3EE03282E]
  50. Wang, L. et al. S-scheme heterojunction photocatalysts for CO reduction. Matter 5, 4187���4211 (2022). [DOI: 10.1016/j.matt.2022.09.009]
  51. Kumar, S. G., Kavitha, R. & Manjunatha, C. Review and perspective on rational design and interface engineering of g-CN/ZnO: from type-II to step-scheme heterojunctions for photocatalytic applications. Energy Fuels 37, 14421���14472 (2023). [DOI: 10.1021/acs.energyfuels.3c01032]
  52. Zhu, B., Sun, J., Zhao, Y., Zhang, L. & Yu, J. Construction of 2D S-scheme heterojunction photocatalyst. Adv. Mater. 36, 2310600 (2024). [DOI: 10.1002/adma.202310600]
  53. Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10, 59���75 (1979). [DOI: 10.1016/0047-2670(79)80037-4]
  54. Sayama, K., Mukasa, K., Abe, R., Abe, Y. & Arakawa, H. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J. Photochem. Photobiol. A Chem. 148, 71���77 (2002). [DOI: 10.1016/S1010-6030(02)00070-9]
  55. Wu, X., Chen, G., Wang, J., Li, J. & Wang, G. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 39, 2212016 (2023). [DOI: 10.3866/PKU.WHXB202212016]
  56. Wu, X., Chen, G., Li, L., Wang, J. & Wang, G. ZnInS-based S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 167, 184���204 (2023). [DOI: 10.1016/j.jmst.2023.05.046]
  57. Wang, L., Bie, C. & Yu, J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 4, 973���983 (2022). [DOI: 10.1016/j.trechm.2022.08.008]
  58. Wang, X. et al. A review of step-scheme photocatalysts. Appl. Mater. Today 29, 101609 (2022). [DOI: 10.1016/j.apmt.2022.101609]
  59. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS���Au���TiO three-component nanojunction system. Nat. Mater. 5, 782���786 (2006). [DOI: 10.1038/nmat1734]
  60. Di, T. et al. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 11, 1394���1411 (2019). [DOI: 10.1002/cctc.201802024]
  61. Xu, Q. et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042���1063 (2018). [DOI: 10.1016/j.mattod.2018.04.008]
  62. Gr��tzel, M. Photoelectrochemical cells. Nature 414, 338���344 (2001). [DOI: 10.1038/35104607]
  63. Wang, X. et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 3452���3454 (2009).
  64. Yu, J., Wang, S., Low, J. & Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-CN���TiO photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883���16890 (2013). [DOI: 10.1039/c3cp53131g]
  65. Lu, J. et al. Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 160, 214���239 (2023). [DOI: 10.1016/j.jmst.2023.03.027]
  66. Zhang, L., Zhang, J., Yu, H. & Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 34, 2107668 (2022). [DOI: 10.1002/adma.202107668]
  67. Xu, X., Dai, S., Xu, S., Zhu, Q. & Li, Y. Efficient photocatalytic cleavage of lignin models by a soluble perylene diimide/carbon nitride S-scheme heterojunction. Angew. Chem. Int. Ed. 62, e202309066 (2023). [DOI: 10.1002/anie.202309066]
  68. Molaei, M. J. Principles, mechanism, and identification of S-scheme heterojunction for photocatalysis: a critical review. J. Am. Ceram. Soc. 107, 5695���5719 (2024). [DOI: 10.1111/jace.19920]
  69. Alli, Y. A. et al. Step-scheme photocatalysts: promising hybrid nanomaterials for optimum conversion of CO. Nano Today 53, 102006 (2023). [DOI: 10.1016/j.nantod.2023.102006]
  70. Kumar, A. et al. A review on S-scheme and dual S-scheme heterojunctions for photocatalytic hydrogen evolution, water detoxification and CO reduction. Fuel 333, 126267 (2023). [DOI: 10.1016/j.fuel.2022.126267]
  71. Mansingh, S. et al. Minireview elaborating S-scheme charge dynamic photocatalysts: journey from Z to S, mechanism of charge flow, characterization proof, and HO evolution. Energy Fuels 37, 9873���9894 (2023). [DOI: 10.1021/acs.energyfuels.3c00717]
  72. Wang, M. et al. Self-floating polymer microreactor for high-efficiency synergistic CO photoreduction and antibiotic degradation in one photoredox cycle. Adv. Funct. Mater. 34, 2408831 (2024). [DOI: 10.1002/adfm.202408831]
  73. Yuan, L. et al. A S-scheme MOF-on-MOF heterostructure. Adv. Funct. Mater. 33, 2214627 (2023). [DOI: 10.1002/adfm.202214627]
  74. Feng, Y. et al. Constructing robust interfacial chemical bond enhanced charge transfer in S-scheme 3D/2D heterojunction for CO photoreduction. Adv. Funct. Mater. 34, 2403502 (2024). [DOI: 10.1002/adfm.202403502]
  75. Wu, X., Tan, L., Chen, G., Kang, J. & Wang, G. g-CN-based S-scheme heterojunction photocatalysts. Sci. China Mater. 67, 444���472 (2024). [DOI: 10.1007/s40843-023-2755-2]
  76. Liu, C. et al. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides. ACS Catal. 12, 8202���8213 (2022). [DOI: 10.1021/acscatal.2c02256]
  77. Meng, K. et al. Plasmonic near-infrared-response S-scheme ZnO/CuInS photocatalyst for HO production coupled with glycerin oxidation. Adv. Mater. 36, 2406460 (2024). [DOI: 10.1002/adma.202406460]
  78. Yue, X., Fan, J. & Xiang, Q. Internal electric field on steering charge migration: modulations, determinations and energy-related applications. Adv. Funct. Mater. 32, 2110258 (2022). [DOI: 10.1002/adfm.202110258]
  79. Hu, H. et al. Construction of a 2D/2D crystalline porous materials based S-scheme heterojunction for efficient photocatalytic H production. Adv. Energy Mater. 14, 2303638 (2024). [DOI: 10.1002/aenm.202303638]
  80. Cammarata, M. et al. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat. Chem. 13, 10���14 (2021). [DOI: 10.1038/s41557-020-00597-8]
  81. He, B. et al. Rapid charge transfer endowed by interfacial Ni-O bonding in S-scheme heterojunction for efficient photocatalytic H and imine production. Angew. Chem. Int. Ed. 62, e202313172 (2023). [DOI: 10.1002/anie.202313172]
  82. Li, R. et al. S-scheme g-CN/CdS heterostructures grafting single Pd atoms for ultrafast charge transport and efficient visible-light-driven H evolution. Adv. Funct. Mater. 34, 2402797 (2024). [DOI: 10.1002/adfm.202402797]
  83. Zhao, F. et al. Charge transfer mechanism on a cobalt-polyoxometalate-TiO photoanode for water oxidation in acid. J. Am. Chem. Soc. 146, 14600���14609 (2024). [>PMCID: ]
  84. Liu, D. et al. Twin S-scheme g-CN/CuFeO/ZnInS heterojunction with a self-supporting three-phase system for photocatalytic CO reduction: mechanism insight and DFT calculations. ACS Catal. 14, 5326���5343 (2024). [DOI: 10.1021/acscatal.4c00409]
  85. Sharma, R. et al. Fabrication of dual S-scheme based CuWO/NiFe/WO heterojunction for visible-light-induced degradation and reduction applications. J. Environ. Chem. Eng. 12, 112126 (2024). [DOI: 10.1016/j.jece.2024.112126]
  86. Zheng, Z. et al. Enhanced charge transfer via S-scheme heterojunction interface engineering of supramolecular SubPc���Br/UiO-66 arrays for efficient photocatalytic oxidation. Small 20, 2306820 (2024). [DOI: 10.1002/smll.202306820]
  87. Zhu, R. et al. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat. Commun. 15, 3171 (2024). [>PMCID: ]
  88. Zhao, L. et al. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO for CO photoconversion of nearly 100% to CO by pure water. Adv. Mater. 34, 2205303 (2022). [DOI: 10.1002/adma.202205303]
  89. Cheng, L., Yue, X., Fan, J. & Xiang, Q. Site-specific electron-driving observations of CO-to-CH photoreduction on co-doped CeO/crystalline carbon nitride S-scheme heterojunctions. Adv. Mater. 34, 2200929 (2022). [DOI: 10.1002/adma.202200929]
  90. Wang, L. et al. Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions. J. Phys. Chem. Lett. 13, 4695���4700 (2022). [DOI: 10.1021/acs.jpclett.2c01332]
  91. Grigioni, I. et al. Photoinduced charge-transfer dynamics in WO/BiVO photoanodes probed through midinfrared transient absorption spectroscopy. J. Am. Chem. Soc. 140, 14042���14045 (2018). [DOI: 10.1021/jacs.8b08309]
  92. Wang, B. et al. Semimetallic bismuthene with edge-rich dangling bonds: broad-spectrum-driven and edge-confined electron enhancement boosting CO hydrogenation reduction. Adv. Mater. 36, 2312676 (2024). [DOI: 10.1002/adma.202312676]
  93. Zhang, J., Zhu, B., Zhang, L. & Yu, J. Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chem. Commun. 59, 688���699 (2023). [DOI: 10.1039/D2CC06300J]
  94. Zu, D. et al. Oxygen vacancies trigger rapid charge transport channels at the engineered interface of S-scheme heterojunction for boosting photocatalytic performance. Angew. Chem. Int. Ed. 63, e202405756 (2024). [DOI: 10.1002/anie.202405756]
  95. Deng, X. et al. Ultrafast electron transfer at the InO/NbO S-scheme interface for CO photoreduction. Nat. Commun. 15, 4807 (2024). [>PMCID: ]
  96. Peng, Y. et al. Tunable interfacial electronic and photoexcited carrier dynamics of an S-scheme MoSiN/SnS heterojunction. J. Phys. Chem. Lett. 15, 2740���2756 (2024). [DOI: 10.1021/acs.jpclett.4c00200]
  97. Liu, B. et al. Simultaneous benzyl alcohol oxidation and H generation over MOF/CdS S-scheme photocatalysts and mechanism study. Chin. J. Catal. 51, 204���215 (2023). [DOI: 10.1016/S1872-2067(23)64466-3]
  98. Luan, X., Yu, Z., Zi, J., Gao, F. & Lian, Z. Photogenerated defect-transit dual S-scheme charge separation for highly efficient hydrogen production. Adv. Funct. Mater. 33, 2304259 (2023). [DOI: 10.1002/adfm.202304259]
  99. Wang, A. et al. Enhanced and synergistic catalytic activation by photoexcitation driven S���scheme heterojunction hydrogel interface electric field. Nat. Commun. 14, 6733 (2023). [>PMCID: ]
  100. Tsai, K.-A. et al. Nitrogen configuration effects on charge carrier dynamics in CsPbBr/carbon dots S-scheme heterojunction for photocatalytic CO reduction. J. Phys. Chem. Lett. 15, 5728���5737 (2024). [DOI: 10.1021/acs.jpclett.4c01128]
  101. Wang, K. et al. Unlocking the charge-migration mechanism in S-scheme junction for photoreduction of diluted CO with high selectivity. Adv. Funct. Mater. 34, 2309603 (2024). [DOI: 10.1002/adfm.202309603]
  102. Ruan, X. et al. Artificial photosynthetic system with spatial dual reduction site enabling enhanced solar hydrogen production. Adv. Mater. 36, 2309199 (2024). [DOI: 10.1002/adma.202309199]
  103. Yan, J. & Zhang, J. Charge transfer kinetic analysis of S-scheme heterojunction by femtosecond transient absorption spectrum. J. Mater. Sci. Technol. 193, 18���21 (2024). [DOI: 10.1016/j.jmst.2023.12.054]
  104. Zhou, S. et al. Pauling-type adsorption of O induced by S-scheme electric field for boosted photocatalytic HO production. J. Mater. Sci. Technol. 199, 53���65 (2024). [DOI: 10.1016/j.jmst.2024.02.048]
  105. Gu, Y., Li, Y., Feng, H., Han, Y. & Li, Z. Built-in electric field induced S-scheme g-CN homojunction for efficient photocatalytic hydrogen evolution: interfacial engineering and morphology control. Nano Res. 17, 4961���4970 (2024). [DOI: 10.1007/s12274-024-6501-0]
  106. Bhosale, A. H., Narra, S., Bhosale, S. S. & Diau, E. W.-G. Interface-enhanced charge recombination in the heterojunction between perovskite nanocrystals and BiOI nanosheets serves as an S-scheme photocatalyst for CO reduction. J. Phys. Chem. Lett. 13, 7987���7993 (2022). [DOI: 10.1021/acs.jpclett.2c02153]
  107. Cai, J. et al. ZnInS/MOF S-scheme photocatalyst for H production and its femtosecond transient absorption mechanism. J. Mater. Sci. Technol. 197, 183���193 (2024). [DOI: 10.1016/j.jmst.2024.02.012]
  108. Zhang, Z. et al. Internal electric field engineering step-scheme���based heterojunction using lead-free CsBiBr perovskite���modified InSnS for selective photocatalytic CO reduction to CO. Appl. Catal. B Environ. 313, 121426 (2022). [DOI: 10.1016/j.apcatb.2022.121426]
  109. Cheng, C. et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew. Chem. Int. Ed. 62, e202218688 (2023). [DOI: 10.1002/anie.202218688]
  110. Zhu, J., Wageh, S. & Al-Ghamdi, A. A. Using the femtosecond technique to study charge transfer dynamics. Chin. J. Catal. 49, 5���7 (2023). [DOI: 10.1016/S1872-2067(23)64438-9]
  111. Wu, Y. et al. 1D/0D heterostructured ZnInS@ZnO S-scheme photocatalysts for improved HO preparation. Chin. J. Catal. 53, 123���133 (2023). [DOI: 10.1016/S1872-2067(23)64514-0]
  112. Zhang, J., Zhang, L., Wang, W. & Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J. Phys. Chem. Lett. 13, 8462���8469 (2022). [DOI: 10.1021/acs.jpclett.2c02125]
  113. Zhang, J. et al. Enhancing photocatalytic activity for solar-to-fuel conversion: a study on S-scheme AgInS/CeVO@Biochar heterojunctions. Adv. Funct. Mater. 34, 2405420 (2024). [DOI: 10.1002/adfm.202405420]
  114. Chang, C.-J. et al. Electron-transfer dynamics and photocatalytic H-production activity of PbS@CuS nanocomposites. J. Taiwan Inst. Chem. Eng. 162, 105587 (2024). [DOI: 10.1016/j.jtice.2024.105587]
  115. Wang, L., Cheng, B., Zhang, L. & Yu, J. In situ irradiated XPS investigation on S-scheme TiO@ZnInS photocatalyst for efficient photocatalytic CO reduction. Small 17, 2103447 (2021). [DOI: 10.1002/smll.202103447]
  116. Cao, S., Zhong, B., Bie, C., Cheng, B. & Xu, F. Insights into photocatalytic mechanism of H production integrated with organic transformation over WO/ZnCdS S-scheme heterojunction. Acta Phys. Chim. Sin. 40, 2307016 (2023). [DOI: 10.3866/PKU.WHXB202307016]
  117. He, B. et al. Cooperative coupling of HO production and organic synthesis over a floatable polystyrene-sphere-supported TiO/BiO S-scheme photocatalyst. Adv. Mater. 34, 2203225 (2022). [DOI: 10.1002/adma.202203225]
  118. Xu, F. et al. Unique S-scheme heterojunctions in self-assembled TiO/CsPbBr hybrids for CO photoreduction. Nat. Commun. 11, 4613 (2020). [>PMCID: ]
  119. Zhao, Z. et al. Interfacial chemical bond and oxygen vacancy-enhanced InO/CdSe-DETA S-scheme heterojunction for photocatalytic CO conversion. Adv. Funct. Mater. 33, 2214470 (2023). [DOI: 10.1002/adfm.202214470]
  120. Zhu, J. et al. Mo-modified ZnInS@NiTiO S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv. Funct. Mater. 33, 2213131 (2023). [DOI: 10.1002/adfm.202213131]
  121. Zhao, H. et al. Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catal. 13, 6619���6629 (2023). [DOI: 10.1021/acscatal.2c06332]
  122. Tang, Q. et al. BiWO/CN S-scheme heterojunction with a built-in electric field for photocatalytic CO reduction. ACS Appl. Nano Mater. 6, 17130���17139 (2023). [DOI: 10.1021/acsanm.3c03349]
  123. Liu, M. et al. Improving interface matching in MOF-on-MOF S-scheme heterojunction through ������� conjugation for boosting photoelectric response. Nano Lett. 23, 5358���5366 (2023). [DOI: 10.1021/acs.nanolett.3c01650]
  124. You, Y. et al. Rational design of S-scheme heterojunction toward efficient photocatalytic cellulose reforming for H and formic acid in pure water. Adv. Mater. 36, 2307962 (2024). [DOI: 10.1002/adma.202307962]
  125. Cheng, C. et al. An inorganic/organic S-scheme heterojunction H-production photocatalyst and its charge transfer mechanism. Adv. Mater. 33, 2100317 (2021). [DOI: 10.1002/adma.202100317]
  126. Fan, J. et al. Internal electric field-modulated dual S-scheme ZnO@CoO/CsPbBr nanocages for highly active and selective photocatalytic CO reduction. J. Catal. 435, 115574 (2024). [DOI: 10.1016/j.jcat.2024.115574]
  127. Chen, D. et al. Modulation of internal electric field in S-scheme heterojunction towards efficient photocatalytic CO conversion. Mater. Today Phys. 40, 101315 (2024). [DOI: 10.1016/j.mtphys.2023.101315]
  128. Xia, P. et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 59, 5218���5225 (2020). [DOI: 10.1002/anie.201916012]
  129. Li, F. et al. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat. Commun. 14, 3901 (2023). [>PMCID: ]
  130. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1���27 (2011). [DOI: 10.1016/j.surfrep.2010.10.001]
  131. Chen, R. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296���301 (2022). [DOI: 10.1038/s41586-022-05183-1]
  132. Zahmatkeshsaredorahi, A., Jakob, D. S., Fang, H., Fakhraai, Z. & Xu, X. G. Pulsed force Kelvin probe force microscopy through integration of lock-in detection. Nano Lett. 23, 8953���8959 (2023). [>PMCID: ]
  133. Ding, H. et al. Fluorenone-based covalent triazine frameworks/twinned ZnCdS S-scheme heterojunction for efficient photocatalytic H evolution. Adv. Funct. Mater. 34, 2400065 (2024). [DOI: 10.1002/adfm.202400065]
  134. Zhang, G. et al. Internal electric field and adsorption effect synergistically boost carbon dioxide conversion on cadmium sulfide@covalent triazine frameworks core���shell photocatalyst. Adv. Funct. Mater. 33, 2308553 (2023). [DOI: 10.1002/adfm.202308553]
  135. Zhang, X. et al. Enhancing photocatalytic HO production with Au co-catalysts through electronic structure modification. Nat. Commun. 15, 3212 (2024). [>PMCID: ]
  136. He, F. et al. 2D/2D/0D TiO/CN/TiC MXene composite S-scheme photocatalyst with enhanced CO reduction activity. Appl. Catal. B Environ. 272, 119006 (2020). [DOI: 10.1016/j.apcatb.2020.119006]
  137. Wang, Y. et al. Nanoscale 0D/1D heterojunction of MAPbBr/COF toward efficient LED-driven S���S coupling reactions. ACS Catal. 13, 15493���15504 (2023). [DOI: 10.1021/acscatal.3c03051]
  138. Luo, J. et al. Built-in electric field mediated S-scheme high-quality charge separation in BiVO4/NiAl-LDH heterojunction for highly efficient photocatalytic degradation of antibiotics. J. Alloys Compd. 1008, 176572 (2024). [DOI: 10.1016/j.jallcom.2024.176572]
  139. Luo, J. et al. In suit constructing S-scheme FeOOH/MgIn2S4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant. Chemosphere 298, 134297 (2022). [DOI: 10.1016/j.chemosphere.2022.134297]
  140. Luo, J. et al. Generating a captivating S-scheme CuBiO/CoVO heterojunction with boosted charge spatial separation for efficiently removing tetracycline antibiotic from wastewater. J. Clean. Prod. 357, 131992 (2022). [DOI: 10.1016/j.jclepro.2022.131992]
  141. Yang, Y. et al. Bifunctional TiO/COF S-scheme photocatalyst with enhanced HO production and furoic acid synthesis mechanism. Appl. Catal. B Environ. Energy 333, 122780 (2023). [DOI: 10.1016/j.apcatb.2023.122780]
  142. Das, K. K. et al. 0D���2D FeO/boron-doped g-CN S-scheme exciton engineering for photocatalytic HO production and photo-Fenton recalcitrant-pollutant detoxification: kinetics, influencing factors, and mechanism. J. Phys. Chem. C 127, 22���40 (2023). [DOI: 10.1021/acs.jpcc.2c06369]
  143. Gu, M. et al. Unveiling charge carrier dynamics at organic���inorganic S-scheme heterojunction interfaces: insights from advanced EPR. Adv. Mater. 37, 2414803 (2024). [DOI: 10.1002/adma.202414803]

Word Cloud

Created with Highcharts 10.0.0S-schemephotosynthesisrepresentsgreenchemistryaimscriticalresearchphotocatalyticheterojunctionstransfertherebydynamicsdevelopmentspectroscopyNaturalpinnacleachievePhotocatalysisinspirednaturaldatingback1911revitalizedofferingpromisingsolutionsenergyenvironmentalchallengesfacingsocietytodayimportantavenuecontemporarychemicalscienceHoweversinglematerialsoftensufferrapidrecombinationphotogeneratedelectronsholesresultingpoorperformanceemergedgeneralmethodenhancechargeseparationgreatlyimprovingefficienciesPerspectivedelveselectronprovidingcomprehensiveoverviewkeycharacterizationtechniquesfemtosecondtransientabsorptionsituirradiatedX-rayphotoelectronKelvinprobeforcemicroscopyaddressinggapworktriggerunderstandingadvancesphoto-inducedcharge-transferprocessescontributingUnitedNationssustainablegoalsCharge-transferphotocatalyst

Similar Articles

Cited By