Integration of GWAS and transcriptome analysis to identify temperature-dependent genes involved in germination of rapeseed ( L.).

Ruisen Wang, Guangyu Wu, Jingyi Zhang, Weizhen Hu, Xiangtan Yao, Lixi Jiang, Yang Zhu
Author Information
  1. Ruisen Wang: Institute of Economic Crop Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, China.
  2. Guangyu Wu: Institute of Crop Science, Zhejiang University, Hangzhou, China.
  3. Jingyi Zhang: Institute of Crop Science, Zhejiang University, Hangzhou, China.
  4. Weizhen Hu: Agricultural Experiment Station, Zhejiang University, Hangzhou, China.
  5. Xiangtan Yao: Institute of Economic Crop Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, China.
  6. Lixi Jiang: Institute of Crop Science, Zhejiang University, Hangzhou, China.
  7. Yang Zhu: Institute of Crop Science, Zhejiang University, Hangzhou, China.

Abstract

Low temperature germination (LTG) is one of crucial agronomic traits for field-grown rapeseed in the Yangtze River Basin, where delayed sowing frequently exposes germination to cold stress. Because of its importance, the genetic basis underlying rapeseed germination under different temperatures has been continuously focused. By long-term field observation, we screened out two cultivars with significantly different LTG performance (JY1621 and JY1605) in field and lab conditions, which therefore were further used for the transcriptome sequencings at three key timepoints under normal and low temperatures. Comparative analysis among multiple groups of differentially expressed genes (DEGs) revealed a set of either early or late temperature response germination (ETRG or LTRG) genes, as well as cold-tolerant (CDT) and temperature-insensitive (TPI) candidate regulators at different germination stages. Furthermore, we performed a genome-wide association study (GWAS) using germination index of 273 rapeseed accessions and identified 24 significant loci associated with germination potential under normal temperatures. Through integrated analysis of transcriptome sequencing and GWAS, we identified a series of candidate genes involved in temperature-dependent germination. Based on the comprehensive analysis, we hypothesized that and could be important candidate genes for LTG due to their expression patterns and haplotype distributions. This study performed the multi-omics analysis on temperature-dependent germination and provided potential genetic loci and candidate genes required for robust germination, which could be further considered for low-temperature germination breeding of rapeseed.

Keywords

References

  1. Int J Mol Sci. 2022 Jul 02;23(13): [PMID: 35806382]
  2. BMC Plant Biol. 2010 Dec 19;10:281 [PMID: 21167067]
  3. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  4. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15485-90 [PMID: 23986496]
  5. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):619-628 [PMID: 33662620]
  6. Proteomics. 2015 May;15(10):1671-9 [PMID: 25597791]
  7. Plant Mol Biol. 2013 Oct;83(3):265-77 [PMID: 23794142]
  8. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40 [PMID: 9023378]
  9. New Phytol. 2022 Jul;235(1):263-275 [PMID: 35322877]
  10. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  11. Plant Cell Physiol. 2009 Dec;50(12):2210-22 [PMID: 19887540]
  12. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33126247]
  13. Mol Plant. 2020 Apr 6;13(4):544-564 [PMID: 32068158]
  14. Annu Rev Plant Biol. 2012;63:507-33 [PMID: 22136565]
  15. Mol Plant. 2019 Jan 7;12(1):30-43 [PMID: 30472326]
  16. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  17. Bioinformatics. 2014 Oct 15;30(20):2843-51 [PMID: 24974202]
  18. Sci Rep. 2019 Jan 11;9(1):55 [PMID: 30635606]
  19. Mol Biol Rep. 2012 Jul;39(7):7823-9 [PMID: 22535320]
  20. New Phytol. 2023 Mar;237(6):2104-2117 [PMID: 36495066]
  21. Theor Appl Genet. 2024 May 13;137(6):129 [PMID: 38740615]
  22. EMBO J. 2000 Nov 1;19(21):5701-10 [PMID: 11060021]
  23. Mol Breed. 2023 Mar 15;43(3):21 [PMID: 37313297]
  24. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  25. Mol Plant. 2016 Jan 4;9(1):34-45 [PMID: 26343970]
  26. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  27. J Exp Bot. 2023 Apr 18;74(8):2726-2739 [PMID: 36724105]
  28. Plant Cell. 1997 Jul;9(7):1055-1066 [PMID: 12237375]
  29. J Exp Bot. 2018 Jan 23;69(3):413-421 [PMID: 29237030]
  30. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  31. New Phytol. 2019 Jun;222(4):1690-1704 [PMID: 30664232]
  32. Plant Cell. 2022 Jul 30;34(8):2833-2851 [PMID: 35543494]
  33. J Biol Chem. 2010 Mar 5;285(10):7119-26 [PMID: 20026608]
  34. Nat Plants. 2020 Jan;6(1):34-45 [PMID: 31932676]
  35. Theor Appl Genet. 2023 Mar 10;136(3):42 [PMID: 36897406]
  36. FEBS J. 2009 Feb;276(3):719-35 [PMID: 19120447]
  37. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  38. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  39. Plant Biol (Stuttg). 2015 Nov;17(6):1104-12 [PMID: 26095078]
  40. New Phytol. 2006;171(3):501-23 [PMID: 16866955]
  41. J Integr Plant Biol. 2024 Mar;66(3):484-509 [PMID: 38456625]
  42. Am J Hum Genet. 2009 Feb;84(2):210-23 [PMID: 19200528]
  43. J Exp Bot. 2011 Jun;62(10):3289-309 [PMID: 21430292]
  44. Front Plant Sci. 2022 Nov 18;13:1048227 [PMID: 36466266]
  45. Int J Mol Sci. 2023 Nov 12;24(22): [PMID: 38003410]
  46. Mol Cell. 2013 May 23;50(4):504-15 [PMID: 23706819]
  47. New Phytol. 2016 Oct;212(2):345-53 [PMID: 27353960]
  48. Development. 2018 Sep 12;145(17): [PMID: 30213790]
  49. Comput Struct Biotechnol J. 2020 Sep 29;18:2766-2773 [PMID: 33101613]
  50. Plant Cell. 2005 Nov;17(11):3155-75 [PMID: 16214899]
  51. Plant Cell. 2008 Aug;20(8):2117-29 [PMID: 18757556]
  52. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  53. Plant J. 2015 Apr;82(2):193-207 [PMID: 25736223]
  54. Plants (Basel). 2021 Feb 24;10(3): [PMID: 33668258]
  55. Plants (Basel). 2022 Oct 23;11(21): [PMID: 36365272]
  56. Trends Plant Sci. 2023 Jun;28(6):630-645 [PMID: 36628655]
  57. J Integr Plant Biol. 2021 Nov;63(11):1874-1887 [PMID: 34379362]
  58. Nat Commun. 2018 Aug 17;9(1):3302 [PMID: 30120236]
  59. PLoS One. 2014 Jan 14;9(1):e85282 [PMID: 24454834]
  60. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  61. Plant Cell Physiol. 2015 Jan;56(1):7-15 [PMID: 25189343]
  62. BMC Plant Biol. 2020 Jul 14;20(1):333 [PMID: 32664856]
  63. Mol Plant. 2023 Apr 3;16(4):775-789 [PMID: 36919242]
  64. Sci Rep. 2021 Dec 3;11(1):23382 [PMID: 34862452]
  65. Plant J. 2024 Apr;118(2):373-387 [PMID: 38159103]

Word Cloud

Created with Highcharts 10.0.0germinationgenesrapeseedanalysistranscriptomecandidateGWAStemperature-dependentLTGdifferenttemperaturestemperaturecoldgeneticfieldnormalperformedstudyidentifiedlocipotentialinvolvedLowonecrucialagronomictraitsfield-grownYangtzeRiverBasindelayedsowingfrequentlyexposesstressimportancebasisunderlyingcontinuouslyfocusedlong-termobservationscreenedtwocultivarssignificantlyperformanceJY1621JY1605labconditionsthereforeusedsequencingsthreekeytimepointslowComparativeamongmultiplegroupsdifferentiallyexpressedDEGsrevealedseteitherearlylateresponseETRGLTRGwellcold-tolerantCDTtemperature-insensitiveTPIregulatorsstagesFurthermoregenome-wideassociationusingindex273accessions24significantassociatedintegratedsequencingseriesBasedcomprehensivehypothesizedimportantdueexpressionpatternshaplotypedistributionsmulti-omicsprovidedrequiredrobustconsideredlow-temperaturebreedingIntegrationidentifyLBrassicanapustolerance

Similar Articles

Cited By

No available data.