Real-time behavioral monitoring of C57BL/6J mice during reproductive cycle.

Ariane Khatiz, Cassidy Tomlinson, Bohdana Ruzhytska, Erika Kathe Croft, Abdelaziz Amrani, Shannon Dunn, Adrianna Mendrek, Denis Gris
Author Information
  1. Ariane Khatiz: Program of Physiology, University of Sherbrooke, Sherbrooke, QC, Canada.
  2. Cassidy Tomlinson: Program of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada.
  3. Bohdana Ruzhytska: Program of Translational Medical Bioengineering, National Technical University of Ukraine, Kyiv, Ukraine.
  4. Erika Kathe Croft: Department of Pediatrics, University of Sherbrooke, Sherbrooke, QC, Canada.
  5. Abdelaziz Amrani: Department of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada.
  6. Shannon Dunn: Department of Immunology, University of Toronto, Toronto, ON, Canada.
  7. Adrianna Mendrek: Department of Psychology, Bishop's University, Sherbrooke, QC, Canada.
  8. Denis Gris: Department of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada.

Abstract

Introduction: The present study aims to identify differences in behavioral profiles in post-pubertal C57BL/6J males and female Mice across distinct phases of the reproductive cycle in a home cage environment.
Methods: To reduce human bias, we used an automated behavioral analysis system from CleverSys Inc. Mice were monitored continuously, and resulting data were summarized across 24-h, light, and dark cycles. Behavioral activities of each period were analyzed using hierarchical clustering, factor analysis, and principal component analysis.
Results: Females exhibited higher levels of physically demanding activities, including ambulatory and exploratory movements, particularly during estrus and metestrus, with estrus showing up to 30% more activity than males. In contrast, males consistently engaged in more sleep-related behaviors across all phases, with significantly higher engagement during the light cycle compared to females in proestrus and estrus (���<���0.0001); the extent of this sex difference was greater during proestrus and estrus than in metestrus and diestrus (���<���0.01). Notably, distinct patterns of sleep fragmentation were observed, with females experiencing greater disruptions during the light cycle, while males showed similar disruptions during the dark cycle. Feeding and resourcing behaviors were highest in males, showing up to 20% increase compared to cycling females, as well as significantly engaging in habituation-related behaviors such as feeding and digging. Interphase differences were observed within females, such as a significant increase of habituation-related activities during estrus compared to proestrus and diestrus (���<���0.05), while during the dark cycle, these activities peaked during the diestrus phase (���<���0.05). Female Mice in the metestrus phase exhibited more sleep-related behaviors than those in proestrus.
Discussion: Our study has revealed prevalent behavioral differences due to sex, and inter-phase variations by employing a continuous monitoring approach designed to reduce bias. This methodology ensures a comprehensive understanding of natural behavioral patterns and strategies.

Keywords

References

  1. Curr Protoc Neurosci. 2009 Jul;Appendix 4:Appendix 4I [PMID: 19575469]
  2. Curr Opin Neurobiol. 2012 Feb;22(1):170-6 [PMID: 22119142]
  3. PLoS One. 2012;7(4):e35538 [PMID: 22514749]
  4. J Neurosci Methods. 2016 May 30;265:99-108 [PMID: 26279343]
  5. Physiol Res. 2019 Dec 20;68(Suppl 3):S353-S359 [PMID: 31928053]
  6. Curr Psychiatry Rep. 2022 Nov;24(11):697-707 [PMID: 36255558]
  7. Am J Physiol Regul Integr Comp Physiol. 2013 Dec;305(11):R1215-67 [PMID: 23904103]
  8. Psychoneuroendocrinology. 2011 Nov;36(10):1530-9 [PMID: 21621331]
  9. Neurosci Biobehav Rev. 2004 Mar;28(1):55-63 [PMID: 15036933]
  10. Lab Anim. 2009 Jan;43(1):17-26 [PMID: 19015177]
  11. J Neurosci Res. 2021 Sep;99(9):2046-2058 [PMID: 34048600]
  12. Sleep Med. 2007 Sep;8(6):613-22 [PMID: 17383933]
  13. Methods Mol Biol. 2019;1916:99-103 [PMID: 30535687]
  14. J Neurosci Methods. 2018 Apr 15;300:37-47 [PMID: 28456660]
  15. Endocrinology. 2003 Jan;144(1):230-9 [PMID: 12488349]
  16. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1983-8 [PMID: 17261803]
  17. Front Behav Neurosci. 2017 Jul 28;11:141 [PMID: 28804452]
  18. Front Neurosci. 2020 Apr 24;14:383 [PMID: 32390795]
  19. Life Sci. 2022 Jul 15;301:120636 [PMID: 35568227]
  20. Cold Spring Harb Perspect Biol. 2022 May 17;14(4): [PMID: 34649925]
  21. Front Behav Neurosci. 2018 Aug 30;12:187 [PMID: 30214401]
  22. Cell Metab. 2010 Jul 7;12(1):10-7 [PMID: 20620991]
  23. Front Neurosci. 2020 Jul 07;14:531 [PMID: 32733181]
  24. Elife. 2020 Jun 09;9: [PMID: 32513386]
  25. Front Psychiatry. 2021 Aug 31;12:711065 [PMID: 34531768]
  26. Neurosci Biobehav Rev. 2024 Sep;164:105789 [PMID: 39002829]
  27. J Clin Endocrinol Metab. 2011 Apr;96(4):E614-23 [PMID: 21289261]
  28. Behav Neurosci. 2001 Apr;115(2):384-93 [PMID: 11345963]
  29. J Vis Exp. 2012 Sep 15;(67):e4389 [PMID: 23007862]
  30. Behav Brain Res. 2018 Oct 1;351:24-33 [PMID: 29803653]
  31. Front Neurosci. 2021 Sep 21;15:739236 [PMID: 34621154]
  32. Endocrinology. 2023 Nov 20;165(1): [PMID: 37967240]
  33. Sci Rep. 2018 Jul 16;8(1):10742 [PMID: 30013130]
  34. Toxicol Pathol. 2015 Aug;43(6):776-93 [PMID: 25739587]
  35. J Exp Biol. 2021 Mar 12;224(Pt 6): [PMID: 33568444]
  36. Mol Hum Reprod. 2009 Dec;15(12):821-8 [PMID: 19815644]
  37. Neurosci Biobehav Rev. 2006;30(7):1045-64 [PMID: 16774787]
  38. Fertil Res Pract. 2020 Mar 14;6:5 [PMID: 32190339]
  39. Lab Anim. 2009 Oct;43(4):357-61 [PMID: 19535390]
  40. Front Mol Neurosci. 2023 Jul 04;16:1146109 [PMID: 37470056]
  41. BMC Biol. 2024 Sep 16;22(1):208 [PMID: 39278902]
  42. Genes Brain Behav. 2005 Oct;4(7):412-9 [PMID: 16176387]
  43. Sci Rep. 2024 Oct 15;14(1):23622 [PMID: 39406742]
  44. J Biol Rhythms. 2024 Oct;39(5):413-422 [PMID: 39082411]
  45. Curr Opin Behav Sci. 2018 Oct;23:143-149 [PMID: 30560152]
  46. Endocrinology. 2020 Oct 1;161(10): [PMID: 32845294]
  47. Behav Brain Res. 2006 Feb 15;167(1):165-74 [PMID: 16214232]
  48. Front Nutr. 2022 Feb 17;9:828522 [PMID: 35284452]
  49. Int J Biol Sci. 2008 Apr 29;4(3):126-32 [PMID: 18449357]
  50. J Physiol Sci. 2015 Jul;65(4):359-66 [PMID: 25800223]
  51. Genes Brain Behav. 2007 Mar;6(2):192-200 [PMID: 16827921]
  52. Neurosci Biobehav Rev. 2011 Jan;35(3):565-72 [PMID: 20620164]
  53. Curr Biol. 2023 Apr 10;33(7):1358-1364.e4 [PMID: 36889318]
  54. Brain Sci. 2021 Apr 20;11(4): [PMID: 33924037]
  55. Horm Behav. 2001 Dec;40(4):472-82 [PMID: 11716576]
  56. J Neurosci Res. 2017 Jan 2;95(1-2):279-290 [PMID: 27870424]
  57. Biol Sex Differ. 2023 Sep 28;14(1):64 [PMID: 37770907]
  58. Nat Neurosci. 2004 May;7(5):462-6 [PMID: 15114359]
  59. Neurosci Biobehav Rev. 2014 Mar;40:1-5 [PMID: 24456941]

Word Cloud

Created with Highcharts 10.0.0cyclebehavioralmalesestrusactivitiesbehaviorsfemalesproestrus���<���0differencesmiceacrossanalysislightdarkmetestruscomparedsexdiestrusstudyC57BL/6Jfemaledistinctphasesreproductivereducebiasexhibitedhighershowingsleep-relatedsignificantlygreaterpatternsobserveddisruptionsincreasehabituation-related05phasemonitoringIntroduction:presentaimsidentifyprofilespost-pubertalhomecageenvironmentMethods:humanusedautomatedsystemCleverSysIncMicemonitoredcontinuouslyresultingdatasummarized24-hcyclesBehavioralperiodanalyzedusinghierarchicalclusteringfactorprincipalcomponentResults:Femaleslevelsphysicallydemandingincludingambulatoryexploratorymovementsparticularly30%activitycontrastconsistentlyengagedengagement0001extentdifference01NotablysleepfragmentationexperiencingshowedsimilarFeedingresourcinghighest20%cyclingwellengagingfeedingdiggingInterphasewithinsignificantpeakedFemaleDiscussion:revealedprevalentdueinter-phasevariationsemployingcontinuousapproachdesignedmethodologyensurescomprehensiveunderstandingnaturalstrategiesReal-timebehaviorestrousmalemousemodel

Similar Articles

Cited By

No available data.