Machine learning-based risk predictive models for diabetic kidney disease in type 2 diabetes mellitus patients: a systematic review and meta-analysis.

Yihan Li, Nan Jin, Qiuzhong Zhan, Yue Huang, Aochuan Sun, Fen Yin, Zhuangzhuang Li, Jiayu Hu, Zhengtang Liu
Author Information
  1. Yihan Li: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  2. Nan Jin: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  3. Qiuzhong Zhan: Faculty of Chinese Medicine, Macau University of Science and Technology, Macao,  Macao SAR, China.
  4. Yue Huang: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  5. Aochuan Sun: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  6. Fen Yin: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  7. Zhuangzhuang Li: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  8. Jiayu Hu: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
  9. Zhengtang Liu: Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.

Abstract

Background: Machine learning (ML) models are being increasingly employed to predict the risk of developing and progressing diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). However, the performance of these models still varies, which limits their widespread adoption and practical application. Therefore, we conducted a systematic review and meta-analysis to summarize and evaluate the performance and clinical applicability of these risk predictive models and to identify key research gaps.
Methods: We conducted a systematic review and meta-analysis to compare the performance of ML predictive models. We searched PubMed, Embase, the Cochrane Library, and Web of Science for English-language studies using ML algorithms to predict the risk of DKD in patients with T2DM, covering the period from database inception to April 18, 2024. The primary performance metric for the models was the area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI). The risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST) checklist.
Results: 26 studies that met the eligibility criteria were included into the meta-analysis. 25 studies performed internal validation, but only 8 studies conducted external validation. A total of 94 ML models were developed, with 81 models evaluated in the internal validation sets and 13 in the external validation sets. The pooled AUC was 0.839 (95% CI 0.787-0.890) in the internal validation and 0.830 (95% CI 0.784-0.877) in the external validation sets. Subgroup analysis based on the type of ML showed that the pooled AUC for traditional regression ML was 0.797 (95% CI 0.777-0.816), for ML was 0.811 (95% CI 0.785-0.836), and for deep learning was 0.863 (95% CI 0.825-0.900). A total of 26 ML models were included, and the AUCs of models that were used three or more times were pooled. Among them, the random forest (RF) models demonstrated the best performance with a pooled AUC of 0.848 (95% CI 0.785-0.911).
Conclusion: This meta-analysis demonstrates that ML exhibit high performance in predicting DKD risk in T2DM patients. However, challenges related to data bias during model development and validation still need to be addressed. Future research should focus on enhancing data transparency and standardization, as well as validating these models' generalizability through multicenter studies.
Systematic Review Registration: https://inplasy.com/inplasy-2024-9-0038/, identifier INPLASY202490038.

Keywords

References

  1. Stat Methods Med Res. 2019 Sep;28(9):2768-2786 [PMID: 30032705]
  2. Front Endocrinol (Lausanne). 2022 Jun 30;13:913021 [PMID: 35846333]
  3. Front Endocrinol (Lausanne). 2022 Dec 09;13:1079725 [PMID: 36568108]
  4. Int Urol Nephrol. 2023 Mar;55(3):687-696 [PMID: 36069963]
  5. Diabetes Care. 2018 Jan;41(Suppl 1):S13-S27 [PMID: 29222373]
  6. JMIR Med Inform. 2020 Jan 31;8(1):e15510 [PMID: 32012067]
  7. Kidney Int. 2023 Dec;104(6):1050-1053 [PMID: 37336291]
  8. J Clin Epidemiol. 2015 Jan;68(1):25-34 [PMID: 25441703]
  9. BMJ Open Diabetes Res Care. 2022 Jan;10(1): [PMID: 35046014]
  10. IEEE Rev Biomed Eng. 2024;17:19-41 [PMID: 37943654]
  11. Front Pharmacol. 2021 Jun 22;12:665951 [PMID: 34239440]
  12. N Engl J Med. 2019 Apr 4;380(14):1347-1358 [PMID: 30943338]
  13. Nutr Metab Cardiovasc Dis. 2019 Nov;29(11):1127-1150 [PMID: 31586514]
  14. J Clin Epidemiol. 2024 Aug;172:111387 [PMID: 38729274]
  15. Comput Methods Programs Biomed. 2020 May;188:105302 [PMID: 31923820]
  16. BMJ. 2011 Nov 28;343:d7163 [PMID: 22123912]
  17. J Magn Reson Imaging. 2024 Nov;60(5):2078-2087 [PMID: 38299753]
  18. Diabetologia. 2018 May;61(5):996-1011 [PMID: 29520581]
  19. Contemp Clin Trials. 2015 Nov;45(Pt A):139-45 [PMID: 26343745]
  20. Diabetologia. 2024 May;67(5):885-894 [PMID: 38374450]
  21. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  22. IEEE Rev Biomed Eng. 2021;14:127-138 [PMID: 32396102]
  23. BMJ. 2009 Mar 17;338:b880 [PMID: 19297312]
  24. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  25. J Diabetes Res. 2024 Jan 20;2024:8857453 [PMID: 38282659]
  26. J Transl Med. 2019 Aug 13;17(1):264 [PMID: 31409386]
  27. J Transl Med. 2022 Mar 26;20(1):143 [PMID: 35346252]
  28. Diabetes Care. 2019 Jan;42(Suppl 1):S124-S138 [PMID: 30559237]
  29. Nat Rev Nephrol. 2020 Jul;16(7):377-390 [PMID: 32398868]
  30. Nat Rev Nephrol. 2020 Nov;16(11):657-668 [PMID: 32424281]
  31. N Engl J Med. 2016 Sep 29;375(13):1216-9 [PMID: 27682033]
  32. J Clin Epidemiol. 1996 Nov;49(11):1225-31 [PMID: 8892489]
  33. Elife. 2023 Sep 14;12: [PMID: 37706530]
  34. Ann Intern Med. 2019 Jan 1;170(1):W1-W33 [PMID: 30596876]
  35. Syst Rev. 2021 Nov 1;10(1):288 [PMID: 34724973]
  36. BMJ. 2024 Apr 16;385:e078378 [PMID: 38626948]
  37. Sci Rep. 2017 Aug 24;7(1):9374 [PMID: 28839244]
  38. Ann Intern Med. 2020 Jun 2;172(11 Suppl):S137-S144 [PMID: 32479180]
  39. Lancet Digit Health. 2023 Dec;5(12):e872-e881 [PMID: 38000872]
  40. PLoS Med. 2013;10(2):e1001381 [PMID: 23393430]
  41. BMJ. 2024 Jan 15;384:e074820 [PMID: 38224968]
  42. Clin J Am Soc Nephrol. 2017 Dec 7;12(12):2032-2045 [PMID: 28522654]
  43. Front Endocrinol (Lausanne). 2023 Jul 04;14:1184190 [PMID: 37469989]
  44. Diabetes Metab Syndr. 2021 Sep-Oct;15(5):102263 [PMID: 34482122]
  45. Heart. 2012 May;98(9):691-8 [PMID: 22397946]
  46. BMJ. 2011 Aug 08;343:d2090 [PMID: 21824904]
  47. Diabetes Res Clin Pract. 2022 Aug;190:110013 [PMID: 35870573]
  48. J Diabetes Res. 2023 Dec 21;2023:5514767 [PMID: 38155834]
  49. BMC Med Res Methodol. 2014 Mar 19;14:40 [PMID: 24645774]
  50. JAMIA Open. 2022 Aug 08;5(3):ooac063 [PMID: 35958671]
  51. J Adv Res. 2024 Oct;64:213-221 [PMID: 38042287]
  52. Kidney Int. 2022 Nov;102(5S):S1-S127 [PMID: 36272764]
  53. PLoS Med. 2014 Oct 14;11(10):e1001744 [PMID: 25314315]
  54. Res Synth Methods. 2011 Dec;2(4):238-53 [PMID: 26061888]
  55. IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):2675-2689 [PMID: 38261504]
  56. Nat Rev Dis Primers. 2015 Jul 30;1:15018 [PMID: 27188921]
  57. BMC Nephrol. 2013 Jul 23;14:162 [PMID: 23879411]
  58. J Med Internet Res. 2023 Oct 12;25:e44895 [PMID: 37824198]
  59. Nat Rev Nephrol. 2011 Jun 28;7(8):446-57 [PMID: 21712852]
  60. World J Diabetes. 2024 Jan 15;15(1):43-52 [PMID: 38313855]
  61. Nat Rev Endocrinol. 2011 Nov 08;8(4):228-36 [PMID: 22064493]
  62. Radiology. 1982 Apr;143(1):29-36 [PMID: 7063747]
  63. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jan 3;80(Pt B):71-80 [PMID: 28648568]
  64. Diabetes Res Clin Pract. 2022 Jan;183:109119 [PMID: 34879977]
  65. BMC Med Inform Decis Mak. 2023 Oct 30;23(1):241 [PMID: 37904184]
  66. J Am Med Inform Assoc. 2023 Nov 17;30(12):1904-1914 [PMID: 37659103]
  67. Diabetes Metab J. 2021 Sep;45(5):708-718 [PMID: 33844903]
  68. J Med Internet Res. 2024 Mar 28;26:e41065 [PMID: 38546730]
  69. Adv Chronic Kidney Dis. 2018 Mar;25(2):121-132 [PMID: 29580576]
  70. J Diabetes Metab Disord. 2022 Jul 26;21(2):1433-1441 [PMID: 36404838]
  71. J Endocrinol Invest. 2023 Feb;46(2):415-423 [PMID: 36114952]
  72. Nat Med. 2019 Jan;25(1):24-29 [PMID: 30617335]
  73. Sci Rep. 2023 Nov 22;13(1):20427 [PMID: 37993534]
  74. Expert Syst Appl. 2019 Nov 15;134:93-101 [PMID: 32968335]
  75. Metabolism. 2021 Sep;122:154834 [PMID: 34217734]
  76. Science. 2015 Jul 17;349(6245):255-60 [PMID: 26185243]
  77. J Diabetes Res. 2020 Feb 03;2020:2315607 [PMID: 32090116]
  78. Biomedicines. 2024 May 15;12(5): [PMID: 38791060]
  79. Kidney Int Suppl (2011). 2018 Jan;8(1):2-7 [PMID: 30675433]
  80. J Med Internet Res. 2021 Jul 3;23(7):e23863 [PMID: 34407500]
  81. IEEE Trans Image Process. 2018 May 10;27(8):4012-4024 [PMID: 29993742]
  82. Front Res Metr Anal. 2023 Jul 31;8:1135853 [PMID: 37588882]
  83. J Am Med Inform Assoc. 2019 Mar 1;26(3):242-253 [PMID: 30602020]

MeSH Term

Humans
Diabetes Mellitus, Type 2
Machine Learning
Diabetic Nephropathies
Risk Assessment
Risk Factors

Word Cloud

Created with Highcharts 10.0.00modelsML95%CIvalidationriskperformancemeta-analysisstudiestypesystematicreviewpredictiveAUCpooledlearningdiabetickidneydiseaseDKDpatients2diabetesmellitusT2DMconductedinternalexternalsetsMachinepredictHoweverstillresearchusingbias26includedtotal785-0datamodelBackground:increasinglyemployeddevelopingprogressingvarieslimitswidespreadadoptionpracticalapplicationThereforesummarizeevaluateclinicalapplicabilityidentifykeygapsMethods:comparesearchedPubMedEmbaseCochraneLibraryWebScienceEnglish-languagealgorithmscoveringperioddatabaseinceptionApril182024primarymetricareareceiveroperatingcharacteristiccurveconfidenceintervalassessedPredictionModelRiskBiasAssessmentToolPROBASTchecklistResults:meteligibilitycriteria25performed894developed81evaluated13839787-0890830784-0877Subgroupanalysisbasedshowedtraditionalregression797777-0816811836deep863825-0900AUCsusedthreetimesAmongrandomforestRFdemonstratedbest848911Conclusion:demonstratesexhibithighpredictingchallengesrelateddevelopmentneedaddressedFuturefocusenhancingtransparencystandardizationwellvalidatingmodels'generalizabilitymulticenterSystematicReviewRegistration:https://inplasycom/inplasy-2024-9-0038/identifierINPLASY202490038learning-basedpatients:machine

Similar Articles

Cited By