Leveraging machine learning for precision medicine: a predictive model for cognitive impairment in cholestasis patients.

Caixia Fang, Lina Zhang, Lanlan Xu, Yongsheng He, Xuerong Zhang, Xiaojuan Xing
Author Information
  1. Caixia Fang: Department of Pharmacy, Clinical Trial Research Center of Qingyang People's Hospital, Qingyang, Gansu, China.
  2. Lina Zhang: Department of Neurology, Qingyang People's Hospital, Qingyang, Gansu, China.
  3. Lanlan Xu: Department of Pharmacy, Clinical Trial Research Center of Qingyang People's Hospital, Qingyang, Gansu, China.
  4. Yongsheng He: Clinical Trial Research Center, Qingyang People's Hospital, Qingyang, Gansu, China.
  5. Xuerong Zhang: Clinical Trial Research Center, Qingyang People's Hospital, Qingyang, Gansu, China.
  6. Xiaojuan Xing: Department of Neurology, Qingyang People's Hospital, Qingyang, Gansu, China. 59984456@qq.com.

Abstract

BACKGROUND: Cholestasis, characterized by impaired bile flow, impacts cognitive function through systemic mechanisms, including inflammation and metabolic dysregulation. Despite its significance, targeted predictive models for cognitive impairment in cholestasis remain underexplored. This study addresses this gap by developing a machine learning-based predictive model tailored to this population.
METHODS: Clinical and biochemical data from Qingyang People's Hospital (2021-2023) were used to train and validate models for predicting cognitive impairment (MoCA ≤ 17). Recursive feature elimination identified critical predictors, while LightGBM and other machine learning models were evaluated. SHAP analysis enhanced model interpretability, and clinical utility was assessed through decision curve analysis (DCA).
RESULTS: LightGBM outperformed other models with an AUC of 0.7955 on the testing dataset. Age, plasma D-dimer, and albumin were key predictors. SHAP analysis revealed non-linear interactions among features, demonstrating the model's clinical alignment. DCA confirmed its utility in improving patient stratification.
CONCLUSION: The developed LightGBM-based model effectively predicts cognitive impairment in cholestasis patients, providing actionable insights for early intervention. Integrating this tool into clinical workflows can enhance precision medicine and improve outcomes in this high-risk population.

Keywords

References

  1. Gastroenterol Hepatol Bed Bench. 2021 Spring;14(2):95-107 [PMID: 33968336]
  2. FASEB J. 2018 May;32(5):2866-2877 [PMID: 29401580]
  3. Thromb Res. 2021 Nov;207:102-112 [PMID: 34600286]
  4. Gut Microbes. 2023 Jan-Dec;15(1):2181930 [PMID: 36864554]
  5. Nat Rev Genet. 2016 Aug 16;17(9):507-22 [PMID: 27528417]
  6. Nat Rev Cardiol. 2018 Dec;15(12):757-769 [PMID: 30375494]
  7. Sci Rep. 2022 Oct 11;12(1):17001 [PMID: 36220873]
  8. Free Radic Biol Med. 2022 Jan;178:295-307 [PMID: 34890769]
  9. Obes Facts. 2024;17(4):374-444 [PMID: 38852583]
  10. J Clin Oncol. 2016 Jul 20;34(21):2534-40 [PMID: 27247223]
  11. J Hepatol. 2022 Mar;76(3):665-680 [PMID: 34800610]
  12. Hepatology. 2023 Feb 1;77(2):659-702 [PMID: 36083140]
  13. J Healthc Eng. 2021 Jun 9;2021:1004767 [PMID: 34211680]
  14. Hypertens Res. 2023 May;46(5):1326-1334 [PMID: 36894746]
  15. Int J Mol Sci. 2024 Mar 15;25(6): [PMID: 38542310]
  16. Antioxidants (Basel). 2022 Apr 30;11(5): [PMID: 35624760]
  17. Hepatology. 2022 Mar;75(3):724-739 [PMID: 35028960]
  18. BMC Bioinformatics. 2021 Dec 17;22(1):597 [PMID: 34920719]
  19. Clin Transplant. 2024 Jan;38(1):e15229 [PMID: 38113284]
  20. Biomark Med. 2021 Apr;15(6):437-454 [PMID: 33709780]
  21. Pediatr Res. 2009 Feb;65(2):176-80 [PMID: 19047958]
  22. Int J Environ Res Public Health. 2021 Aug 25;18(17): [PMID: 34501552]
  23. Comput Biol Med. 2021 Oct;137:104813 [PMID: 34481185]
  24. Alzheimers Dement. 2021 Aug;17(8):1317-1328 [PMID: 33590967]
  25. Brain Behav Immun. 2022 Jan;99:132-146 [PMID: 34601012]
  26. Genome Biol. 2021 Sep 20;22(1):271 [PMID: 34544450]
  27. J Transl Med. 2025 Feb 4;23(1):149 [PMID: 39905423]
  28. Mol Med. 2023 Jan 24;29(1):12 [PMID: 36694130]
  29. Annu Rev Stat Appl. 2019 Mar;6:263-286 [PMID: 31073534]

Grants

  1. QY2021A-S031/Science and Technology Program of Qingyang City
  2. QY2021A-S031/Science and Technology Program of Qingyang City
  3. QY2021A-S031/Science and Technology Program of Qingyang City
  4. QCSJ-[2022]-42-33/Science and Technology Innovation Platform and Talents Program of Qingyang City
  5. QCSJ-[2022]-42-33/Science and Technology Innovation Platform and Talents Program of Qingyang City
  6. QCSJ-[2022]-42-33/Science and Technology Innovation Platform and Talents Program of Qingyang City

MeSH Term

Humans
Machine Learning
Cholestasis
Cognitive Dysfunction
Precision Medicine
Female
Male
Middle Aged
Aged
Adult

Word Cloud

Created with Highcharts 10.0.0cognitiveimpairmentmodelsmodelpredictivecholestasismachineLightGBMlearninganalysisclinicalCholestasispopulationpredictorsSHAPutilityDCApatientsprecisionBACKGROUND:characterizedimpairedbileflowimpactsfunctionsystemicmechanismsincludinginflammationmetabolicdysregulationDespitesignificancetargetedremainunderexploredstudyaddressesgapdevelopinglearning-basedtailoredMETHODS:ClinicalbiochemicaldataQingyangPeople'sHospital2021-2023usedtrainvalidatepredictingMoCA ≤ 17RecursivefeatureeliminationidentifiedcriticalevaluatedenhancedinterpretabilityassesseddecisioncurveRESULTS:outperformedAUC07955testingdatasetAgeplasmaD-dimeralbuminkeyrevealednon-linearinteractionsamongfeaturesdemonstratingmodel'salignmentconfirmedimprovingpatientstratificationCONCLUSION:developedLightGBM-basedeffectivelypredictsprovidingactionableinsightsearlyinterventionIntegratingtoolworkflowscanenhancemedicineimproveoutcomeshigh-riskLeveragingmedicine:CognitiveMachinePredictivemodeling

Similar Articles

Cited By