Identifying behavior regulatory leverage over mental disorders transcriptomic network hubs toward lifestyle-dependent psychiatric drugs repurposing.

Mennatullah Abdelzaher Turky, Ibrahim Youssef, Azza El Amir
Author Information
  1. Mennatullah Abdelzaher Turky: Faculty of Science, Biotechnology Department, Cairo University, 1 Gamaa Street, Oula, Giza, 12613, Egypt. Mennatullah.mohamed@nu.edu.eg.
  2. Ibrahim Youssef: Faculty of Engineering, Biomedical Engineering Department, Cairo University, Giza, 12613, Egypt.
  3. Azza El Amir: Faculty of Science, Biotechnology Department, Cairo University, Giza, 12613, Egypt.

Abstract

BACKGROUND: There is a vast prevalence of mental disorders, but patient responses to psychiatric medication fluctuate. As food choices and daily habits play a fundamental role in this fluctuation, integrating machine learning with network medicine can provide valuable insights into disease systems and the regulatory leverage of lifestyle in mental health.
METHODS: This study analyzed coexpression network modules of MDD and PTSD blood transcriptomic profile using modularity optimization method, the first runner-up of Disease Module Identification DREAM challenge. The top disease genes of both MDD and PTSD modules were detected using random forest model. Afterward, the regulatory signature of two predominant habitual phenotypes, diet-induced obesity and smoking, were identified. These transcription/translation regulating factors (TRFs) signals were transduced toward the two disorders' disease genes. A bipartite network of drugs that target the TRFS together with PTSD or MDD hubs was constructed.
RESULTS: The research revealed one MDD hub, the CENPJ, which is known to influence intellectual ability. This observation paves the way for additional investigations into the potential of CENPJ as a novel target for MDD therapeutic agents development. Additionally, most of the predicted PTSD hubs were associated with multiple carcinomas, of which the most notable was SHCBP1. SHCBP1 is a known risk factor for glioma, suggesting the importance of continuous monitoring of patients with PTSD to mitigate potential cancer comorbidities. The signaling network illustrated that two PTSD and three MDD biomarkers were co-regulated by habitual phenotype TRFs. 6-Prenylnaringenin and Aflibercept were identified as potential candidates for targeting the MDD and PTSD hubs: ATP6V0A1 and PIGF. However, habitual phenotype TRFs have no leverage over ATP6V0A1 and PIGF.
CONCLUSION: Combining machine learning and network biology succeeded in revealing biomarkers for two notoriously spreading disorders, MDD and PTSD. This approach offers a non-invasive diagnostic pipeline and identifies potential drug targets that could be repurposed under further investigation. These findings contribute to our understanding of the complex interplay between mental disorders, daily habits, and psychiatric interventions, thereby facilitating more targeted and personalized treatment strategies.

Keywords

References

  1. Trends Cogn Sci. 2006 Apr;10(4):152-8 [PMID: 16513410]
  2. Front Genet. 2022 Aug 19;13:899407 [PMID: 36061167]
  3. Pharmaceuticals (Basel). 2019 Jan 10;12(1): [PMID: 30634637]
  4. Cancer Res. 2002 Nov 1;62(21):6006-10 [PMID: 12414619]
  5. Ann Gen Psychiatry. 2021 Feb 2;20(1):10 [PMID: 33531016]
  6. J Am Heart Assoc. 2023 May 2;12(9):e028133 [PMID: 37073814]
  7. Neurochem Res. 2021 Nov;46(11):2761-2775 [PMID: 34075521]
  8. F1000Res. 2021 Oct 25;10:1079 [PMID: 38550618]
  9. BMC Med. 2022 Sep 29;20(1):328 [PMID: 36171556]
  10. Nat Rev Neurol. 2022 May;18(5):273-288 [PMID: 35352034]
  11. Biomolecules. 2023 Feb 22;13(3): [PMID: 36979351]
  12. Bioinformatics. 2022 Sep 30;38(19):4554-4561 [PMID: 35929808]
  13. Aging (Albany NY). 2023 Mar 14;15(6):2066-2081 [PMID: 36920183]
  14. J Biol Chem. 2012 Aug 17;287(34):28790-801 [PMID: 22761434]
  15. Protein Sci. 2022 Jan;31(1):8-22 [PMID: 34717010]
  16. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  17. SAGE Open Med. 2020 Nov 20;8:2050312120974169 [PMID: 33282305]
  18. World J Gastrointest Oncol. 2011 Oct 15;3(10):144-7 [PMID: 22046491]
  19. NPJ Syst Biol Appl. 2020 Aug 31;6(1):29 [PMID: 32868765]
  20. Mol Med Rep. 2020 Aug;22(2):603-611 [PMID: 32468027]
  21. Cell Commun Signal. 2024 Feb 16;22(1):131 [PMID: 38365687]
  22. Neuroimage Clin. 2015 Dec 18;10:302-9 [PMID: 26900570]
  23. Int J Clin Exp Pathol. 2015 Nov 01;8(11):15338-43 [PMID: 26823891]
  24. Cochrane Database Syst Rev. 2000;(2):CD001460 [PMID: 10796440]
  25. Nucleic Acids Res. 2021 Jan 8;49(D1):D1144-D1151 [PMID: 33237278]
  26. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  27. Prim Care Companion CNS Disord. 2011;13(2): [PMID: 21977354]
  28. Br J Rheumatol. 1997 Jan;36(1):104-9 [PMID: 9117147]
  29. IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):731-741 [PMID: 35061591]
  30. J Child Psychol Psychiatry. 2022 Nov;63(11):1405-1414 [PMID: 35174492]
  31. ScientificWorldJournal. 2013 Jun 26;2013:129841 [PMID: 23878520]
  32. J Clin Med. 2020 Sep 12;9(9): [PMID: 32932645]
  33. Front Sociol. 2023 Feb 21;8:1112159 [PMID: 36895332]
  34. Bioinformatics. 2004 Feb 12;20(3):307-15 [PMID: 14960456]
  35. Sci Rep. 2021 May 6;11(1):9645 [PMID: 33958659]
  36. PLoS One. 2023 Feb 24;18(2):e0282206 [PMID: 36827396]
  37. Iran J Public Health. 2015 Nov;44(11):1442-4 [PMID: 26744700]
  38. Nucleic Acids Res. 2019 Jan 8;47(D1):D711-D715 [PMID: 30357387]
  39. Psychiatry Investig. 2016 Jan;13(1):121-6 [PMID: 26766954]
  40. Prog Retin Eye Res. 2019 Mar;69:116-136 [PMID: 30385175]
  41. FEBS Open Bio. 2021 Mar;11(3):833-850 [PMID: 33423377]
  42. Compr Psychoneuroendocrinol. 2023 Feb 28;14:100181 [PMID: 36911250]
  43. Mol Psychiatry. 2022 Jan;27(1):58-72 [PMID: 34257409]
  44. Nucleic Acids Res. 2024 Jan 5;52(D1):D679-D689 [PMID: 37941138]
  45. Nat Rev Drug Discov. 2021 Jan;20(1):21-38 [PMID: 33173189]
  46. Front Genet. 2019 Apr 11;10:294 [PMID: 31031797]
  47. J Gen Intern Med. 1998 Mar;13(3):182-5 [PMID: 9541375]
  48. Mol Neurobiol. 2021 Aug;58(8):3884-3902 [PMID: 33860438]
  49. Psychiatry Res. 2016 Jun 30;240:314-320 [PMID: 27138824]
  50. EMBO Rep. 2014 Jul;15(7):736-9 [PMID: 24907240]
  51. Transl Psychiatry. 2020 Nov 24;10(1):407 [PMID: 33235206]
  52. Front Psychiatry. 2020 Nov 10;11:568037 [PMID: 33240124]
  53. Ann N Y Acad Sci. 2018 Jan;1411(1):21-35 [PMID: 28868790]
  54. J Hepatocell Carcinoma. 2021 Apr 06;8:211-222 [PMID: 33854986]
  55. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  56. RNA. 2019 Jul;25(7):857-868 [PMID: 31010885]
  57. J Neuroinflammation. 2022 Apr 4;19(1):74 [PMID: 35379263]
  58. IEEE J Biomed Health Inform. 2024 Aug;28(8):4544-4552 [PMID: 38190664]
  59. Biomed Res Int. 2021 Sep 28;2021:9957209 [PMID: 34631891]
  60. Adv Exp Med Biol. 2022;1361:119-141 [PMID: 35230686]
  61. Behav Brain Res. 2021 Feb 5;399:113015 [PMID: 33212086]
  62. Brief Bioinform. 2018 Jul 20;19(4):575-592 [PMID: 28077403]
  63. J Proteome Res. 2012 Apr 6;11(4):2533-43 [PMID: 22360420]
  64. Front Psychiatry. 2024 Jul 15;15:1402680 [PMID: 39077626]
  65. Neuropsychiatr Dis Treat. 2015 Aug 27;11:2253-8 [PMID: 26347335]
  66. Mol Med Rep. 2011 May-Jun;4(3):445-9 [PMID: 21468590]
  67. Bioinformatics. 2010 Oct 1;26(19):2363-7 [PMID: 20688976]
  68. BMC Public Health. 2018 May 16;18(1):632 [PMID: 29769115]
  69. Avicenna J Med Biotechnol. 2014 Oct;6(4):191 [PMID: 25414780]
  70. Eur J Med Genet. 2022 Dec;65(12):104659 [PMID: 36334884]
  71. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  72. BMC Med. 2020 Jul 14;18(1):205 [PMID: 32660482]
  73. Pediatrics. 1990 Jun;85(6):1086-91 [PMID: 2339032]
  74. BMC Bioinformatics. 2019 Aug 14;20(1):423 [PMID: 31412762]
  75. Nucleic Acids Res. 2024 Jan 5;52(D1):D672-D678 [PMID: 37941124]
  76. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  77. Neuropsychopharmacology. 2016 Sep;41(10):2502-11 [PMID: 27067128]
  78. J Affect Disord. 2022 Aug 15;311:407-415 [PMID: 35642835]
  79. CNS Neurosci Ther. 2023 Jun;29(6):1497-1511 [PMID: 36924298]
  80. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  81. BMC Bioinformatics. 2006 Jan 06;7:3 [PMID: 16398926]
  82. Prev Chronic Dis. 2024 Oct 24;21:E82 [PMID: 39447323]
  83. Bioorg Chem. 2023 Jun;135:106493 [PMID: 36996509]
  84. Nat Med. 2017 Apr 7;23(4):405-408 [PMID: 28388612]
  85. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  86. Arch Gen Psychiatry. 2010 Oct;67(10):1012-24 [PMID: 20921117]
  87. Pharmacol Rep. 2012;64(4):979-83 [PMID: 23087151]
  88. Dtsch Arztebl Int. 2010 Nov;107(44):776-82 [PMID: 21116397]
  89. Dialogues Clin Neurosci. 2011;13(3):263-78 [PMID: 22034143]
  90. Neurobiol Stress. 2017 Nov 26;8:10-20 [PMID: 29255778]
  91. Inf Fusion. 2019 Oct;50:71-91 [PMID: 30467459]
  92. Front Psychiatry. 2023 Jun 15;14:1104841 [PMID: 37398582]
  93. BMC Psychiatry. 2022 May 3;22(1):313 [PMID: 35505395]
  94. J Med Genet. 2017 Mar;54(3):196-201 [PMID: 27694521]
  95. Epilepsia. 2005;46 Suppl 4:45-9 [PMID: 15938709]
  96. Pharmacogenet Genomics. 2014 Jun;24(6):314-9 [PMID: 24751813]
  97. Pharmacogenomics. 2016 Apr;17(5):507-29 [PMID: 27023437]
  98. J Neurosci. 2019 Mar 13;39(11):1994-2010 [PMID: 30626697]
  99. Cell Rep Med. 2023 May 16;4(5):101045 [PMID: 37196634]
  100. J Atheroscler Thromb. 2020 Apr 1;27(4):279-302 [PMID: 31723086]
  101. BMC Med Inform Decis Mak. 2019 May 29;19(1):102 [PMID: 31142298]
  102. Dialogues Clin Neurosci. 2007;9(1):47-59 [PMID: 17506225]
  103. Neurobiol Stress. 2020 Nov 21;13:100270 [PMID: 33344723]
  104. Schizophr Res. 2010 Dec;124(1-3):183-91 [PMID: 20675101]
  105. Nat Methods. 2019 Sep;16(9):843-852 [PMID: 31471613]
  106. Protein Sci. 2019 Nov;28(11):1947-1951 [PMID: 31441146]
  107. Biochem Pharmacol. 1999 Jul 1;58(1):193-200 [PMID: 10403534]
  108. Sci Adv. 2018 Jul 25;4(7):eaat1294 [PMID: 30050989]
  109. Eur J Pharmacol. 2024 Mar 15;967:176416 [PMID: 38342359]
  110. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15506-11 [PMID: 15483108]
  111. Soc Sci Med. 2022 Jul;304:112318 [PMID: 31130237]
  112. Cell Death Discov. 2023 Oct 31;9(1):404 [PMID: 37907480]
  113. Expert Opin Pharmacother. 2013 Jun;14(8):1017-28 [PMID: 23560774]
  114. Neuropsychopharmacology. 2013 Feb;38(3):377-85 [PMID: 22990943]
  115. Eur J Clin Pharmacol. 2021 Mar;77(3):331-339 [PMID: 33029652]
  116. Chem Res Toxicol. 2016 Jul 18;29(7):1142-50 [PMID: 27269377]
  117. IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3245-3256 [PMID: 37028367]
  118. Dev Neurobiol. 2010 Apr;70(5):289-97 [PMID: 20186711]
  119. Bioinformatics. 2022 Jan 27;38(4):1165-1167 [PMID: 34694378]
  120. Mol Psychiatry. 2022 Jan;27(1):281-295 [PMID: 34079068]
  121. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  122. Mol Psychiatry. 2021 Feb;26(2):462-481 [PMID: 32632208]
  123. Bioinformatics. 2015 Sep 1;31(17):2912-4 [PMID: 25964631]
  124. Curr Drug Targets. 2011 Aug;12(9):1235-44 [PMID: 21443466]
  125. Front Hum Neurosci. 2012 May 03;6:119 [PMID: 22563313]
  126. J Am Heart Assoc. 2018 Aug 7;7(15):e008755 [PMID: 30371223]
  127. Ophthalmic Physiol Opt. 2021 Mar;41(2):331-341 [PMID: 33481297]
  128. Eur J Psychotraumatol. 2014 Aug 14;5: [PMID: 25206954]
  129. Curr Probl Cardiol. 2018 Dec;43(12):448-483 [PMID: 30172550]
  130. Front Cell Dev Biol. 2020 Jul 31;8:682 [PMID: 32850808]
  131. BMC Psychol. 2014 Dec 23;2(1):58 [PMID: 25628891]
  132. Front Med Technol. 2020 Dec 14;2:604183 [PMID: 35047888]
  133. Curr Protoc Bioinformatics. 2017 Jun 27;58:8.23.1-8.23.16 [PMID: 28654729]
  134. Mol Carcinog. 2018 Sep;57(9):1181-1190 [PMID: 29745440]
  135. Curr Opin Rheumatol. 2019 May;31(3):279-284 [PMID: 30789849]
  136. Transl Psychiatry. 2020 Jul 23;10(1):232 [PMID: 32699209]
  137. Nat Biotechnol. 2006 Sep;24(9):1151-61 [PMID: 16964229]
  138. Adv Exp Med Biol. 1993;334:253-8 [PMID: 8249688]
  139. Biochem Pharmacol. 2014 Jun 15;89(4):536-44 [PMID: 24726441]
  140. Psychol Med. 2020 Apr;50(5):746-753 [PMID: 30919787]
  141. Bioinformatics. 2015 Aug 1;31(15):2595-7 [PMID: 25810428]
  142. Neurosignals. 2017;25(1):39-53 [PMID: 28977803]
  143. Optometry. 2010 May;81(5):240-52 [PMID: 20435270]
  144. Biol Psychiatry. 2009 Jan 15;65(2):150-9 [PMID: 18823877]
  145. Clin Pharmacol Ther. 2013 Dec;94(6):613-6 [PMID: 24241633]
  146. Brain Behav. 2020 Feb;10(2):e01502 [PMID: 31875662]

MeSH Term

Humans
Drug Repositioning
Gene Regulatory Networks
Transcriptome
Stress Disorders, Post-Traumatic
Life Style
Mental Disorders
Depressive Disorder, Major
Gene Expression Profiling
Machine Learning

Word Cloud

Created with Highcharts 10.0.0PTSDMDDnetworkdisordersmentaltwopotentialpsychiatriclearningdiseaseregulatoryleveragehabitualTRFshubsfooddailyhabitsmachinemodulestranscriptomicusinggenesidentifiedtowarddrugstargetCENPJknownSHCBP1biomarkersphenotypeATP6V0A1PIGFbiologyrepurposingBACKGROUND:vastprevalencepatientresponsesmedicationfluctuatechoicesplayfundamentalrolefluctuationintegratingmedicinecanprovidevaluableinsightssystemslifestylehealthMETHODS:studyanalyzedcoexpressionbloodprofilemodularityoptimizationmethodfirstrunner-upDiseaseModuleIdentificationDREAMchallengetopdetectedrandomforestmodelAfterwardsignaturepredominantphenotypesdiet-inducedobesitysmokingtranscription/translationregulatingfactorssignalstransduceddisorders'bipartiteTRFStogetherconstructedRESULTS:researchrevealedonehubinfluenceintellectualabilityobservationpaveswayadditionalinvestigationsnoveltherapeuticagentsdevelopmentAdditionallypredictedassociatedmultiplecarcinomasnotableriskfactorgliomasuggestingimportancecontinuousmonitoringpatientsmitigatecancercomorbiditiessignalingillustratedthreeco-regulated6-PrenylnaringeninAfliberceptcandidatestargetinghubs:HoweverCONCLUSION:Combiningsucceededrevealingnotoriouslyspreadingapproachoffersnon-invasivediagnosticpipelineidentifiesdrugtargetsrepurposedinvestigationfindingscontributeunderstandingcomplexinterplayinterventionstherebyfacilitatingtargetedpersonalizedtreatmentstrategiesIdentifyingbehaviorlifestyle-dependentDepressionDrugMachineMentalNetworkObesitySignaltransductionSmokingUnhealthy

Similar Articles

Cited By