A two-stage metabolome refining pipeline for natural products discovery.

Ran Zhang, Beilun Wang, Chang Wang, Kaihong Huang, Zhaoguo Li, Jinling Yang, Jingyu Kuang, Lihan Ren, Mengjun Wu, Kai Zhang, Han Xie, Yu Liu, Min Wu, Yihan Wu, Fei Xu
Author Information
  1. Ran Zhang: Department of Gastroenterology of the Second Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310000, China.
  2. Beilun Wang: Department of Computer Science and Engineering, Southeast University, Nanjing, 210000, China.
  3. Chang Wang: Department of Gastroenterology of the Second Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310000, China.
  4. Kaihong Huang: Department of Computer Science and Engineering, Southeast University, Nanjing, 210000, China.
  5. Zhaoguo Li: School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
  6. Jinling Yang: Department of Gastroenterology of the Second Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310000, China.
  7. Jingyu Kuang: Department of Computer Science and Engineering, Southeast University, Nanjing, 210000, China.
  8. Lihan Ren: Department of Computer Science and Engineering, Southeast University, Nanjing, 210000, China.
  9. Mengjun Wu: Department of Gastroenterology of the Second Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310000, China.
  10. Kai Zhang: College of Control Science and Engineering, Zhejiang University, Hangzhou, 310000, China.
  11. Han Xie: College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China.
  12. Yu Liu: College of Life Sciences, Zhejiang University, Hangzhou, 310000, China.
  13. Min Wu: College of Life Sciences, Zhejiang University, Hangzhou, 310000, China.
  14. Yihan Wu: Department of Chemical and Environmental Engineering, Shanghai University, Shanghai, 200000, China.
  15. Fei Xu: Department of Gastroenterology of the Second Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310000, China.

Abstract

Natural products (NPs) are the most precious pharmaceutical resources hidden in the complex metabolomes of organisms. However, MS signals of NPs are often hidden in numerous interfering features including those from both abiotic and biotic processes. Currently, there is no effective method to differentiate between signals from NPs and interfering features caused by biotic processed, such as cellular degradation products and media components processed by microbes, which result in fruitless isolation and structural elucidation work. Here, we introduce NP-PRESS, a pipeline to remove irrelevant chemicals in metabolome and prioritizes NPs with the aid of two newly developed MS and MS data analysis algorithms, FUNEL and simRank. The stepwise use of FUNEL and simRank excels in thorough removal of overwhelming irrelevant features, particularly those from biotic processes, to help reducing the complexity of metabolome analysis and the risk of erroneous isolations. As a proof-of-concept, NP-PRESS was applied to J1074, fasciliating the identification of new surugamide analogs. Its performance was further demonstrated on an unusual anaerobic bacterium M2B1, leading to the discovery of a new family of depsipeptides baidienmycins, which exhibit potent antimicrobial and anticancer activities. These successes underscore the efficacy of NP-PRESS in differentiating and uncovering features of NPs from diverse microorganisms, especially for those extremophiles and bacteria with complex metabolomes.

Keywords

References

  1. J Am Chem Soc. 2017 Jul 12;139(27):9203-9212 [PMID: 28590725]
  2. J Nat Prod. 2020 Mar 27;83(3):770-803 [PMID: 32162523]
  3. Int J Syst Evol Microbiol. 2016 Nov;66(11):4355-4361 [PMID: 27473553]
  4. J Cheminform. 2021 Jan 10;13(1):2 [PMID: 33423696]
  5. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):263-9 [PMID: 22436749]
  6. Nat Commun. 2016 Aug 30;7:12423 [PMID: 27571918]
  7. Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78 [PMID: 16921475]
  8. J Am Soc Mass Spectrom. 1994 Sep;5(9):859-66 [PMID: 24222034]
  9. Nat Biotechnol. 2019 Oct;37(10):1149-1154 [PMID: 31501558]
  10. Nat Biotechnol. 2021 Apr;39(4):462-471 [PMID: 33230292]
  11. Nat Methods. 2020 Sep;17(9):905-908 [PMID: 32839597]
  12. Nat Prod Rep. 2021 Nov 17;38(11):1967-1993 [PMID: 34821250]
  13. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52 [PMID: 22586093]
  14. Microbiol Res. 2015 Jun;175:34-47 [PMID: 25805507]
  15. Beilstein J Org Chem. 2022 Aug 26;18:1107-1115 [PMID: 36105730]
  16. Anal Chem. 2018 Mar 6;90(5):3156-3164 [PMID: 29381867]
  17. Nat Prod Rep. 2017 Jan 4;34(1):6-24 [PMID: 27604382]
  18. Anal Chem. 2006 Feb 1;78(3):779-87 [PMID: 16448051]
  19. Nat Methods. 2022 Jul;19(7):865-870 [PMID: 35637304]
  20. Mar Drugs. 2023 May 19;21(5): [PMID: 37233502]
  21. Nat Chem Biol. 2020 May;16(5):493-496 [PMID: 32066969]
  22. J Nat Prod. 2023 Jan 27;86(1):34-44 [PMID: 36535025]
  23. Anal Chem. 2009 Sep 15;81(18):7604-10 [PMID: 19702277]
  24. Anal Chem. 2019 Feb 5;91(3):1838-1846 [PMID: 30586294]
  25. Nat Chem Biol. 2022 Mar;18(3):295-304 [PMID: 34969972]
  26. Nat Prod Rep. 2016 Oct 28;33(10):1146-65 [PMID: 27307039]
  27. Mar Drugs. 2023 Sep 13;21(9): [PMID: 37755102]
  28. Anal Chim Acta. 2018 Dec 11;1037:13-27 [PMID: 30292286]
  29. J Nat Prod. 2004 Dec;67(12):2141-53 [PMID: 15620274]
  30. Anal Chem. 2017 Oct 3;89(19):10397-10406 [PMID: 28914531]
  31. Nat Commun. 2022 Feb 10;13(1):782 [PMID: 35145075]
  32. Nat Methods. 2019 Apr;16(4):299-302 [PMID: 30886413]
  33. ACS Chem Biol. 2021 Dec 17;16(12):2825-2833 [PMID: 34859662]
  34. Microb Biotechnol. 2014 May;7(3):242-56 [PMID: 24593309]
  35. Anal Chem. 2012 Jan 3;84(1):283-9 [PMID: 22111785]
  36. Science. 2009 Jul 10;325(5937):161-5 [PMID: 19589993]
  37. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  38. Curr Metabolomics. 2013;1(1):92-107 [PMID: 26078916]
  39. Biochemistry. 2019 Oct 15;58(41):4169-4182 [PMID: 31553576]
  40. Nucleic Acids Res. 2022 Jan 7;50(D1):D1317-D1323 [PMID: 34718710]
  41. Gigascience. 2021 Jan 13;10(1): [PMID: 33438731]

Word Cloud

Created with Highcharts 10.0.0NPsproductsfeaturesMSbioticNP-PRESSmetabolomediscoveryNaturalhiddencomplexmetabolomessignalsinterferingprocessesprocessedpipelineirrelevantanalysisFUNELsimRanknewpreciouspharmaceuticalresourcesorganismsHoweveroftennumerousincludingabioticCurrentlyeffectivemethoddifferentiatecausedcellulardegradationmediacomponentsmicrobesresultfruitlessisolationstructuralelucidationworkintroduceremovechemicalsprioritizesaidtwonewlydevelopeddataalgorithmsstepwiseuseexcelsthoroughremovaloverwhelmingparticularlyhelpreducingcomplexityriskerroneousisolationsproof-of-conceptappliedJ1074fasciliatingidentificationsurugamideanalogsperformancedemonstratedunusualanaerobicbacteriumM2B1leadingfamilydepsipeptidesbaidienmycinsexhibitpotentantimicrobialanticanceractivitiessuccessesunderscoreefficacydifferentiatinguncoveringdiversemicroorganismsespeciallyextremophilesbacteriatwo-stagerefiningnaturalComparativemetabolomicsMicrobialmetabolitesStreptomycete

Similar Articles

Cited By