Accumulation differences of high-value ingredients in different phenotype insights from integrative metabolome and transcriptome analyses.

Juan Zeng, Yu Qing Long, Jia Yuan Zhu, Xue Sen Fu, Jing Yu Zhang, Jia Wei He, Xiao Rong Liu, Zhi Hui Wang, Qiao Zhen Tong, Xiang Dan Liu, Ri Bao Zhou
Author Information
  1. Juan Zeng: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  2. Yu Qing Long: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  3. Jia Yuan Zhu: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  4. Xue Sen Fu: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  5. Jing Yu Zhang: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  6. Jia Wei He: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  7. Xiao Rong Liu: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  8. Zhi Hui Wang: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  9. Qiao Zhen Tong: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  10. Xiang Dan Liu: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
  11. Ri Bao Zhou: School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.

Abstract

Background: Hand.-Mazz., the primary sources of Lonicerae Flos(Shanyinhua), brings great medicinal and economic value as an invaluable source of natural bioactive compounds. Nutrient and metabolites accumulation generally changed accompany with its floral development and opening. While the specific accumulation pattern and the underlying molecular regulatory networks remain unclear.
Methods: The present study intergrated a comparative analysis upon UPLC-MS/MS-based metabolomics and RNA-seq-based transcriptomics to revealed the differences in accumulation of flavonoids, phenolic acids, and terpenoids between the xianglei-type (corolla-closed) and wild-type (corolla-unfolded) of flowers.
Results and conclusion: 674 differentially accumulated metabolites(DAMs) were identified in WT and XL, with 5,776 common differentially expressed genes(DEGs), revealing a significant differences in accumulation of flavonoids, phenolic acids, and terpenoids during the late stage of flower development between the xianglei-type and wild-type of flowers. Combined analysis further identified 36 hub genes, major transcription factors and hormone-related genes, which play key roles in the differential accumulation of the abovementioned metabolites. These lines of evidences provide a molecular basis for the metabolic changes occurring during growth and can be significantly implicated in further research on the biosynthetic pathways associated with high-value potent active components in woody plants.

Keywords

References

  1. PLoS One. 2021 May 26;16(5):e0251390 [PMID: 34038434]
  2. Ann Transl Med. 2020 Jul;8(13):823 [PMID: 32793668]
  3. Front Plant Sci. 2023 Feb 01;13:1095644 [PMID: 36816481]
  4. Int J Mol Sci. 2022 Jul 20;23(14): [PMID: 35887360]
  5. Molecules. 2020 Aug 19;25(17): [PMID: 32825106]
  6. Hortic Res. 2024 Feb 28;11(5):uhae058 [PMID: 38716227]
  7. J Integr Plant Biol. 2024 Mar;66(3):510-531 [PMID: 38441295]
  8. J Ethnopharmacol. 2024 Apr 6;323:117697 [PMID: 38185261]
  9. J Exp Bot. 2024 Aug 28;75(16):4729-4744 [PMID: 38767602]
  10. Trends Plant Sci. 2023 Apr;28(4):429-446 [PMID: 36621413]
  11. Molecules. 2019 Mar 09;24(5): [PMID: 30857315]
  12. J Agric Food Chem. 2022 Mar 16;70(10):3239-3251 [PMID: 35245048]
  13. Front Plant Sci. 2021 Aug 03;12:710826 [PMID: 34413870]
  14. Food Chem Toxicol. 2009 Jul;47(7):1716-21 [PMID: 19406196]
  15. J Adv Res. 2022 Dec;42:205-219 [PMID: 36513414]
  16. Hortic Res. 2023 Jul 05;10(8):uhad134 [PMID: 37564268]
  17. Biomed Res Int. 2022 Jun 6;2022:5445291 [PMID: 35707379]
  18. Genes Genomics. 2023 Apr;45(4):437-450 [PMID: 36694039]
  19. Plant Physiol. 2011 May;156(1):144-64 [PMID: 21427279]
  20. Plant Biotechnol J. 2023 Nov;21(11):2209-2223 [PMID: 37449344]
  21. Psychol Methods. 2012 Sep;17(3):399-417 [PMID: 22563845]
  22. Gene. 2023 Dec 20;888:147739 [PMID: 37633535]
  23. Hortic Res. 2021 Aug 1;8(1):179 [PMID: 34333545]
  24. Front Plant Sci. 2021 Feb 24;12:622011 [PMID: 33719294]
  25. Int J Oncol. 2023 Mar;62(3): [PMID: 36704835]
  26. J Agric Food Chem. 2021 Jan 13;69(1):332-344 [PMID: 33370113]
  27. J Genet. 2021;100: [PMID: 33764335]
  28. BMC Plant Biol. 2020 May 13;20(1):214 [PMID: 32404131]
  29. J Food Biochem. 2022 Dec;46(12):e14430 [PMID: 36165435]
  30. J Agric Food Chem. 2018 Aug 1;66(30):8069-8078 [PMID: 30001627]
  31. Front Pharmacol. 2022 Jan 04;12:810748 [PMID: 35058788]
  32. Front Microbiol. 2019 Jul 24;10:1681 [PMID: 31396190]
  33. Food Chem. 2019 Feb 15;274:368-375 [PMID: 30372953]
  34. Oxid Med Cell Longev. 2022 Mar 12;2022:6316611 [PMID: 35313639]
  35. Biotechnol Adv. 2019 Nov 15;37(7):107394 [PMID: 31078628]
  36. Curr Pharm Biotechnol. 2018;19(14):1098-1113 [PMID: 30556498]
  37. Front Plant Sci. 2022 May 12;13:830517 [PMID: 35646021]
  38. Foods. 2023 Mar 01;12(5): [PMID: 36900567]
  39. Int J Mol Sci. 2021 Jul 23;22(15): [PMID: 34360660]
  40. Chin Herb Med. 2021 Jun 30;13(3):332-341 [PMID: 36118930]
  41. Methods Mol Biol. 2018;1754:15-27 [PMID: 29536435]
  42. J Agric Food Chem. 2022 Jun 15;70(23):7095-7109 [PMID: 35638867]
  43. Plant Physiol Biochem. 2020 Apr;149:217-224 [PMID: 32078899]
  44. Acta Pharm Sin B. 2021 Nov;11(11):3337-3363 [PMID: 34567957]
  45. J Exp Bot. 2016 Nov;67(21):6007-6019 [PMID: 27811076]
  46. J Pharm Biomed Anal. 2016 May 30;124:254-260 [PMID: 26970594]
  47. Cold Spring Harb Perspect Biol. 2021 Oct 1;13(10): [PMID: 33903155]
  48. Metab Eng. 2022 Sep;73:182-191 [PMID: 35934177]
  49. Cell Physiol Biochem. 2018;46(4):1317-1330 [PMID: 29689551]
  50. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  51. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  52. Front Plant Sci. 2011 Jun 30;2:25 [PMID: 22639586]
  53. Int J Mol Sci. 2023 Jul 04;24(13): [PMID: 37446256]
  54. Plant Biotechnol J. 2022 Jul;20(7):1232-1234 [PMID: 35373460]
  55. Int J Mol Sci. 2021 Nov 26;22(23): [PMID: 34884627]
  56. Front Plant Sci. 2022 Nov 07;13:1021576 [PMID: 36420028]
  57. Int J Mol Sci. 2022 Jul 26;23(15): [PMID: 35897779]
  58. New Phytol. 2022 Jan;233(1):373-389 [PMID: 34255862]
  59. Plant Foods Hum Nutr. 2004 Summer;59(3):113-22 [PMID: 15678717]
  60. Zhongguo Zhong Yao Za Zhi. 2022 May;47(9):2419-2429 [PMID: 35531689]
  61. Carbohydr Res. 2013 Apr 5;370:76-81 [PMID: 23454139]
  62. J Agric Food Chem. 2021 Sep 29;69(38):11171-11184 [PMID: 34529412]
  63. Nat Prod Rep. 2023 Dec 13;40(12):1901-1937 [PMID: 37661854]
  64. PLoS One. 2015 Sep 18;10(9):e0137212 [PMID: 26381882]

Word Cloud

Created with Highcharts 10.0.0accumulationmetabolitesdifferencesgenesHand-Mazzdevelopmentmolecularregulatoryanalysisflavonoidsphenolicacidsterpenoidsxianglei-typewild-typeflowersdifferentiallyidentifiedhigh-valueactiveingredientsmetabolometranscriptomeBackground:primarysourcesLoniceraeFlosShanyinhuabringsgreatmedicinaleconomicvalueinvaluablesourcenaturalbioactivecompoundsNutrientgenerallychangedaccompanyfloralopeningspecificpatternunderlyingnetworksremainunclearMethods:presentstudyintergratedcomparativeuponUPLC-MS/MS-basedmetabolomicsRNA-seq-basedtranscriptomicsrevealedcorolla-closedcorolla-unfoldedResultsconclusion:674accumulatedDAMsWTXL5776commonexpressedDEGsrevealingsignificantlatestageflowerCombined36hubmajortranscriptionfactorshormone-relatedplaykeyrolesdifferentialabovementionedlinesevidencesprovidebasismetabolicchangesoccurringgrowthcansignificantlyimplicatedresearchbiosyntheticpathwaysassociatedpotentcomponentswoodyplantsAccumulationdifferentphenotypeinsightsintegrativeanalysesLoniceramacranthoidesnetwork

Similar Articles

Cited By

No available data.