Targeted siRNA Delivery Against RUNX1 Via tFNA: Inhibiting Retinal Neovascularization and Restoring Vessels Through Dll4/Notch1 Signaling.

Xiaodi Zhou, Xiaoxiao Xu, Qiong Wang, Yanting Lai, Linyan Zhang, Yunfeng Lin, Xiaoyan Ding, Limei Sun
Author Information
  1. Xiaodi Zhou: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  2. Xiaoxiao Xu: Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
  3. Qiong Wang: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  4. Yanting Lai: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  5. Linyan Zhang: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  6. Yunfeng Lin: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological Hospital, Sichuan University, Chengdu, China.
  7. Xiaoyan Ding: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  8. Limei Sun: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Abstract

Purpose: To assess the efficacy of tetrahedral framework nucleic acids (tFNAs) as a delivery system for small interfering RNA (siRNA) targeting RUNX1 (siRUNX1) in inhibiting retinal neovascularization (RNV) and restoring vascular integrity via the Dll4/Notch1 signaling pathway.
Methods: tFNAs and tFNAs-siRUNX1 were synthesized using annealing of single-stranded DNAs and characterized by PAGE and high-performance capillary electrophoresis. Human umbilical vein endothelial cells were treated under hypoxic conditions with tFNAs-siRUNX1, and cellular uptake was evaluated using fluorescence microscopy and flow cytometry. Angiogenesis was assessed through EdU proliferation, tube formation, and wound-healing assays. In vivo experiments used oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models in mice, with subsequent imaging by optical coherence tomography (OCT) and fundus fluorescence angiography. Gene and protein expression were analyzed by RT-PCR and Western blotting, focusing on the Dll4/Notch1 pathway and apoptosis markers.
Results: tFNAs-siRUNX1 effectively inhibited endothelial cell proliferation, migration, and tube formation in vitro. In OIR and CNV models, it reduced neovascularization, nonperfusion areas, and vascular leakage. The mechanism involved modulation of the Dll4/Notch1 pathway, with decreased Dll4, Notch1, and Hes1 and increased Nts expression. tFNAs-siRUNX1 also reduced endothelial cell apoptosis via the Bcl-2/Bax pathway.
Conclusions: tFNAs-siRUNX1 is a promising delivery system for targeting RNV, inhibiting neovascularization, and restoring retinal vascular integrity, providing a potential therapeutic alternative to anti-VEGF treatments.

References

  1. Microcirculation. 2000 Oct;7(5):317-33 [PMID: 11079250]
  2. Biosci Rep. 2020 May 29;40(5): [PMID: 32319515]
  3. Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63 [PMID: 24355989]
  4. Blood. 2011 Jun 16;117(24):6728-37 [PMID: 21498671]
  5. Adv Mater. 2022 Nov;34(46):e2107820 [PMID: 34787933]
  6. Gut. 2020 Oct;69(10):1750-1761 [PMID: 31980446]
  7. Cell. 2009 Apr 17;137(2):216-33 [PMID: 19379690]
  8. Signal Transduct Target Ther. 2020 Jul 17;5(1):120 [PMID: 32678073]
  9. Antimicrob Agents Chemother. 1992 Dec;36(12):2628-33 [PMID: 1282790]
  10. JCI Insight. 2020 Mar 26;5(6): [PMID: 32213707]
  11. Surv Ophthalmol. 2018 Nov - Dec;63(6):816-850 [PMID: 29705175]
  12. Prog Retin Eye Res. 2018 Mar;63:1-19 [PMID: 29129724]
  13. Eye (Lond). 2013 Jul;27(7):787-94 [PMID: 23722722]
  14. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3219-24 [PMID: 17296940]
  15. Science. 2001 Apr 27;292(5517):727-30 [PMID: 11326099]
  16. Cell Prolif. 2024 Jul;57(7):e13623 [PMID: 38433462]
  17. Cells. 2022 Oct 01;11(19): [PMID: 36231060]
  18. Cell Prolif. 2024 Nov;57(11):e13695 [PMID: 39086110]
  19. Invest Ophthalmol Vis Sci. 2014 Mar 28;55(3):1884-92 [PMID: 24550366]
  20. Am J Pathol. 2021 Mar;191(3):418-424 [PMID: 33345998]
  21. Cell Prolif. 2023 Jul;56(7):e13407 [PMID: 36694349]
  22. Lancet. 2018 Sep 29;392(10153):1147-1159 [PMID: 30303083]
  23. N Engl J Med. 2012 Dec 27;367(26):2515-26 [PMID: 23268666]
  24. J Nanobiotechnology. 2024 Mar 16;22(1):113 [PMID: 38491372]
  25. Surv Ophthalmol. 2022 Sep-Oct;67(5):1467-1475 [PMID: 35189184]
  26. ACS Appl Mater Interfaces. 2019 Sep 11;11(36):32787-32797 [PMID: 31424187]
  27. BMJ Open Diabetes Res Care. 2021 Aug;9(1): [PMID: 34348917]
  28. PLoS Pathog. 2014 Mar 20;10(3):e1003997 [PMID: 24651404]
  29. Development. 2013 Jul;140(14):3051-61 [PMID: 23785053]
  30. J Hepatol. 2021 Jul;75(1):34-45 [PMID: 33571553]
  31. Adv Mater. 2022 Nov;34(46):e2202513 [PMID: 35483031]
  32. J Clin Invest. 2020 Aug 3;130(8):4235-4251 [PMID: 32427589]
  33. Diabetes. 2017 Jul;66(7):1950-1956 [PMID: 28400392]
  34. Bioact Mater. 2021 Dec 18;14:134-144 [PMID: 35310341]
  35. Cells. 2019 Oct 18;8(10): [PMID: 31635436]
  36. Invest Ophthalmol Vis Sci. 2011 Jun 08;52(7):4039-47 [PMID: 21357392]
  37. Clin Neuropathol. 2015 May-Jun;34(3):117-27 [PMID: 25881913]
  38. Lancet. 2010 Jul 10;376(9735):124-36 [PMID: 20580421]
  39. Nanoscale. 2019 Nov 21;11(43):20667-20675 [PMID: 31642452]

MeSH Term

Animals
Retinal Neovascularization
Mice
Receptor, Notch1
Signal Transduction
RNA, Small Interfering
Humans
Disease Models, Animal
Mice, Inbred C57BL
Cell Proliferation
Human Umbilical Vein Endothelial Cells
Blotting, Western
Calcium-Binding Proteins
Adaptor Proteins, Signal Transducing
Fluorescein Angiography
Apoptosis
Choroidal Neovascularization
Flow Cytometry
Cells, Cultured
Cell Movement
Retinal Vessels
Male
Membrane Proteins
Intracellular Signaling Peptides and Proteins

Chemicals

Receptor, Notch1
RNA, Small Interfering
Calcium-Binding Proteins
Adaptor Proteins, Signal Transducing
DLL4 protein, human
delta protein
Membrane Proteins
Intracellular Signaling Peptides and Proteins

Word Cloud

Created with Highcharts 10.0.0tFNAs-siRUNX1neovascularizationDll4/Notch1pathwayvascularendothelialtFNAsdeliverysystemsiRNAtargetingRUNX1inhibitingretinalRNVrestoringintegrityviausingfluorescenceproliferationtubeformationOIRCNVmodelsexpressionapoptosiscellreducedPurpose:assessefficacytetrahedralframeworknucleicacidssmallinterferingRNAsiRUNX1signalingMethods:synthesizedannealingsingle-strandedDNAscharacterizedPAGEhigh-performancecapillaryelectrophoresisHumanumbilicalveincellstreatedhypoxicconditionscellularuptakeevaluatedmicroscopyflowcytometryAngiogenesisassessedEdUwound-healingassaysvivoexperimentsusedoxygen-inducedretinopathylaser-inducedchoroidalmicesubsequentimagingopticalcoherencetomographyOCTfundusangiographyGeneproteinanalyzedRT-PCRWesternblottingfocusingmarkersResults:effectivelyinhibitedmigrationvitrononperfusionareasleakagemechanisminvolvedmodulationdecreasedDll4Notch1Hes1increasedNtsalsoBcl-2/BaxConclusions:promisingprovidingpotentialtherapeuticalternativeanti-VEGFtreatmentsTargetedDeliveryViatFNA:InhibitingRetinalNeovascularizationRestoringVesselsSignaling

Similar Articles

Cited By