Lacticaseibacillus rhamnosus OF44 with Potent Antimicrobial Activity: Evidence from the Complete Genome and Phenotypic Analysis.

Jinhong Wang, Zhihui Ma, Qianyue Xu, Benliang Wei, Mengmeng Wang, Yanhong Liu, Yu Tian, Haifeng Zhang, Liang Xiao, Yiyi Zhong, Yuanqiang Zou
Author Information
  1. Jinhong Wang: BGI Research, Shenzhen, 518083, China.
  2. Zhihui Ma: BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China.
  3. Qianyue Xu: BGI Research, Shenzhen, 518083, China.
  4. Benliang Wei: BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China.
  5. Mengmeng Wang: BGI Research, Shenzhen, 518083, China.
  6. Yanhong Liu: BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China.
  7. Yu Tian: BGI Research, Shenzhen, 518083, China.
  8. Haifeng Zhang: BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China.
  9. Liang Xiao: Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
  10. Yiyi Zhong: BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China. zhongyiyi@genomics.cn.
  11. Yuanqiang Zou: Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China. zouyuanqiang@genomics.cn.

Abstract

Lacticaseibacillus rhamnosus is extensively studied, with some strains widely applied for enhancing human health. Complete genome analysis is crucial for the functional exploration of probiotics. This study aimed to investigate the potential of L. rhamnosus OF44 (OF44) to promote human health through complete genome and phenotypic analysis. The complete genome sequence of OF44 was 2,978,769 bp, with 2791 CDSs and an average GC content of 47%. In vitro experiments demonstrated that OF44 had a broad carbon source fermentation capacity. Resistance gene analysis and simulated digestion tests confirmed the favorable tolerance of OF44 under harsh conditions, suggesting its potential as an oral supplement. OF44 possessed various potential genes related to bioactive substances with antimicrobial activity, such as antimicrobial peptides, lactic acid, hydrogen peroxide, and exopolysaccharides, most of which were detected in vitro. Further, OF44 exhibited significant growth inhibition capacities against pathogens from the gut, vagina, skin, and mouth, likely due to high co-aggregation with pathogens, multiple antimicrobial peptide clusters, and adhesin gene clusters. Additionally, oral administration of OF44 was found to reduce the pH and inflammation levels in the vaginal microenvironment of rats with bacterial vaginosis. Therefore, OF44 exhibited probiotic properties in improving reproductive tract bacterial infections by modulating vaginal microbiota balance and inhibiting pathogen growth. In summary, this study provided a new perspective on the application of OF44 as a supplement in the food and pharmaceutical fields.

Keywords

References

  1. Önning G, Palm R, Linninge C, Larsson N (2022) New Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus strains: well tolerated and improve infant microbiota. Pediatr Res 91(7):1849–1857. https://doi.org/10.1038/s41390-021-01678-1 [DOI: 10.1038/s41390-021-01678-1]
  2. Markiewicz LH, Honke J, Haros M, Świątecka D, Wróblewska B (2013) Diet shapes the ability of human intestinal microbiota to degrade phytate–in vitro studies. J Appl Microbiol 115(1):247–259. https://doi.org/10.1111/jam.12204 [DOI: 10.1111/jam.12204]
  3. Du T, Lei A, Zhang N, and Zhu C (2022) The beneficial role of probiotic Lactobacillus in respiratory diseases. Front Immunol 13(908010. https://doi.org/10.3389/fimmu.2022.908010
  4. Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M (2017) Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 101(1):35–45. https://doi.org/10.1007/s00253-016-8005-7 [DOI: 10.1007/s00253-016-8005-7]
  5. Ren C, Faas MM, de Vos P (2021) Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 61(8):1365–1393. https://doi.org/10.1080/10408398.2020.1758625 [DOI: 10.1080/10408398.2020.1758625]
  6. Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S, Coppola R (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol Lett 244(1):129–137. https://doi.org/10.1016/j.femsle.2005.01.037 [DOI: 10.1016/j.femsle.2005.01.037]
  7. Wang M, Hu T, Lin X, Liang H, Li W, Zhao S, Zhong Y, Zhang H, Ge L, Jin X, Xiao L, and Zou Y (2023) Probiotic characteristics of Lactobacillus gasseri TF08–1: a cholesterol-lowering bacterium, isolated from human gut. Enzyme Microb Technol 169(110276. https://doi.org/10.1016/j.enzmictec.2023.110276
  8. Choksket S, Sharma S, Harshvardhan PV, Jain A, Patil PB, Korpole S, Grover V (2023) Evaluation of human dental plaque lactic acid bacilli for probiotic potential and functional analysis in relevance to oral health. Indian J Microbiol 63(4):520–532. https://doi.org/10.1007/s12088-023-01108-2 [DOI: 10.1007/s12088-023-01108-2]
  9. Hongjing Shu XH, Hong Zehui, Dong Ke, Zou Yue, Cao Mengxi, Wang Ruixue, Yihang Xu, Liao Linxuan, Zuo Haojiang, Pei Xiaofang (2024) Screening and genome analysis of potential probiotic lactic acid bacteria with broad-spectrum antibacterial activity from Sichuan sun-dried vinegar grains (Cupei). LWT - Food Sci Technol 202:116288. https://doi.org/10.1016/j.lwt.2024.116288 [DOI: 10.1016/j.lwt.2024.116288]
  10. Zheng J, Ahmad AA, Yang Y, Liang Z, Shen W, Feng M, Shen J, Lan X, Ding X (2022) Lactobacillus rhamnosus CY12 enhances intestinal barrier function by regulating tight junction protein expression, oxidative stress, and inflammation response in lipopolysaccharide-induced Caco-2 cells. Int J Mol Sci 23(19):11162. https://doi.org/10.3390/ijms231911162 [DOI: 10.3390/ijms231911162]
  11. Boggio Marzet C, Burgos F, Del Compare M, Gerold I, Tabacco O, and Vinderola G (2022) Approach to probiotics in pediatrics: the role of Lactobacillus rhamnosus GG. Arch Argent Pediatr 120(1): https://doi.org/10.5546/aap.2022.eng.e1
  12. Szajewska H, Hojsak I (2020) Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children. Postgrad Med 132(5):441–451. https://doi.org/10.1080/00325481.2020.1731214 [DOI: 10.1080/00325481.2020.1731214]
  13. Arellano-García L, Macarulla MT, Cuevas-Sierra A, Martínez JA, Portillo MP, Milton-Laskibar I (2023) Lactobacillus rhamnosus GG administration partially prevents diet-induced insulin resistance in rats: a comparison with its heat-inactivated parabiotic. Food Funct 14(19):8865–8875. https://doi.org/10.1039/d3fo01307c [DOI: 10.1039/d3fo01307c]
  14. López-Almada G, Mejía-León ME, Salazar-López NJ (2024) Probiotic, postbiotic, and paraprobiotic effects of Lactobacillus rhamnosus as a modulator of obesity-associated factors. Foods 13(22):3529. https://doi.org/10.3390/foods13223529 [DOI: 10.3390/foods13223529]
  15. Tyagi AM (2024) Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice. Endocrinol, Diabetes Metab 7(1):e440. https://doi.org/10.1002/edm2.440 [DOI: 10.1002/edm2.440]
  16. Hu Y, Zhu S, Ye X, Wen Z, Fu H, Zhao J, Zhao M, Li X, Wang Y, Li X (2024) Oral delivery of sodium alginate/chitosan bilayer microgels loaded with Lactobacillus rhamnosus GG for targeted therapy of ulcerative colitis. Int J Biol Macromol 278:134785. https://doi.org/10.1016/j.ijbiomac.2024.134785 [DOI: 10.1016/j.ijbiomac.2024.134785]
  17. Hu S, Tang B, Lu C, Wang S, Wu L, Lei Y, Tang L, Zhu H, Wang D, Yang S (2024) Lactobacillus rhamnosus GG ameliorates triptolide-induced liver injury through modulation of the bile acid-FXR axis. Pharmacol Res 206:107275. https://doi.org/10.1016/j.phrs.2024.107275 [DOI: 10.1016/j.phrs.2024.107275]
  18. Sun X, Zhang J (2021) Bacterial exopolysaccharides: chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 173:481–490. https://doi.org/10.1016/j.ijbiomac.2021.01.139 [DOI: 10.1016/j.ijbiomac.2021.01.139]
  19. Chee WJY, Chew SY, Than LTL (2020) Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 19(1):203. https://doi.org/10.1186/s12934-020-01464-4 [DOI: 10.1186/s12934-020-01464-4]
  20. Nurainiwati SA, Ma’roef M, Pravitasari DN, Putra PYP (2022) Effectivity and efficacy probiotics for bacterial vaginosis treatments: meta-analysis. Infect Dis Model 7(4):597–604. https://doi.org/10.1016/j.idm.2022.09.001 [DOI: 10.1016/j.idm.2022.09.001]
  21. Tas GG, Sati L (2024) Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 41(10):2585–2605. https://doi.org/10.1007/s10815-024-03230-6 [DOI: 10.1007/s10815-024-03230-6]
  22. Jang S-E, Jeong J-J, Choi S-Y, Kim H, Han MJ, Kim D-H (2017) Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLa-14 attenuate Gardnerella vaginalis-infected bacterial vaginosis in mice. Nutrients 9(6):531. https://doi.org/10.3390/nu9060531 [DOI: 10.3390/nu9060531]
  23. Joo H-M, Hyun Y-J, Myoung K-S, Ahn Y-T, Lee J-H, Huh C-S, Han MJ, Kim D-H (2011) Lactobacillus johnsonii HY7042 ameliorates Gardnerella vaginalis-induced vaginosis by killing Gardnerella vaginalis and inhibiting NF-κB activation. Int Immunopharmacol 11(11):1758–1765. https://doi.org/10.1016/j.intimp.2011.07.002 [DOI: 10.1016/j.intimp.2011.07.002]
  24. Lin X, Hu T, Chen J, Liang H, Zhou J, Wu Z, Ye C, Jin X, Xu X, Zhang W (2023) The genomic landscape of reference genomes of cultivated human gut bacteria. Nat Commun 14(1):1663. https://doi.org/10.1038/s41467-023-37396-x [DOI: 10.1038/s41467-023-37396-x]
  25. Xiaowei Zhang J L, Shaowei Zhao, Mengyu Gao, Yuanqiang Zou, Liang Xiao. (2021) Lactobacillus rhamnosus used to prevent and/or treat diseases caused by disturbance of reproductive tract microbiota and/or bone loss. CN 112760247 B(ZL 202011248842.0) B.-R.a. BGI-Nutri 37 (Patent)
  26. Chu C, Huang S, Wang X, Zhao G, Hao W, Zhong Y, Ma Z, Huang C, Peng Y, Wei F (2024) Randomized controlled trial comparing the impacts of Saccharomyces boulardii and Lactobacillus rhamnosus OF44 on intestinal flora in cerebral palsy rats: insights into inflammation biomarkers and depression-like behaviors. Translational Pediatrics 13(1):72 [DOI: 10.21037/tp-23-566]
  27. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153 [DOI: 10.1093/bioinformatics/btu153]
  28. Jones J, Murphy CP, Sleator RD, Culligan EP (2024) An exploratory in silico analysis of bacteriocin gene clusters in the urobiome. Microbiome Res Rep 3(2):24. https://doi.org/10.20517/mrr.2023.78
  29. Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, Franco BD, Chobert JM, Haertlé T (2013) Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20:42–9. https://doi.org/10.1016/j.anaerobe.2013.01.003 [DOI: 10.1016/j.anaerobe.2013.01.003]
  30. Abdalla AK, Ayyash MM, Olaimat AN, Osaili TM, Al-Nabulsi AA, Shah NP, Holley R (2021) Exopolysaccharides as antimicrobial agents: mechanism and spectrum of activity. Front Microbiol 12:664395. https://doi.org/10.3389/fmicb.2021.664395 [DOI: 10.3389/fmicb.2021.664395]
  31. Guo L, Ze X, Feng H, Liu Y, Ge Y, Zhao X, Song C, Jiao Y, Liu J, Mu S (2024) Identification and quantification of viable Lacticaseibacillus rhamnosus in probiotics using validated PMA-qPCR method. Front Microbiol 15:1341884. https://doi.org/10.3389/fmicb.2024.1341884 [DOI: 10.3389/fmicb.2024.1341884]
  32. Pitino I, Randazzo CL, Cross KL, Parker ML, Bisignano C, Wickham MS, Mandalari G, Caggia C (2012) Survival of Lactobacillus rhamnosus strains inoculated in cheese matrix during simulated human digestion. Food Microbiol 31(1):57–63. https://doi.org/10.1016/j.fm.2012.02.013 [DOI: 10.1016/j.fm.2012.02.013]
  33. Huang YP, Shi JY, Luo SC, Xu SY, Zhang JD, Molnár I, Yang QQ, Zhang BB (2023) Antimicrobial substances and mechanisms of Lactobacillus rhamnosus against Gardnerella vaginalis. Probiotics Antimicrob Proteins 15(2):400–410. https://doi.org/10.1007/s12602-022-10019-5 [DOI: 10.1007/s12602-022-10019-5]
  34. Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134(1–2):154–159. https://doi.org/10.1016/j.jbiotec.2008.01.008 [DOI: 10.1016/j.jbiotec.2008.01.008]
  35. Juntarachot N, Sunpaweravong S, Kaewdech A, Wongsuwanlert M, Ruangsri P, Pahumunto N, Teanpaisan R (2023) Characterization of adhesion, anti-adhesion, co-aggregation, and hydrophobicity of Helicobacter pylori and probiotic strains. J Taibah Univ Med Sci 18(5):1048–1054. https://doi.org/10.1016/j.jtumed.2023.02.017 [DOI: 10.1016/j.jtumed.2023.02.017]
  36. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76(7):2049–2057. https://doi.org/10.1128/AEM.01958-09 [DOI: 10.1128/AEM.01958-09]
  37. Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A (2023) Key stress response mechanisms of probiotics during their journey through the digestive system: a review. Probiotics Antimicrob Proteins 15(5):1250–1270. https://doi.org/10.1007/s12602-022-09981-x [DOI: 10.1007/s12602-022-09981-x]
  38. Guan N, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 104(1):51–65. https://doi.org/10.1007/s00253-019-10226-1 [DOI: 10.1007/s00253-019-10226-1]
  39. Hu T, Li S, and Zhong W (2024) [Bacterial acid tolerance mechanism based on acid signal transduction system and its applications]. Sheng Wu Gong Cheng Xue Bao 40(3):644–664. https://doi.org/10.13345/j.cjb.230346
  40. Baek S, Lee EJ (2024) PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 77:102401. https://doi.org/10.1016/j.mib.2023.102401 [DOI: 10.1016/j.mib.2023.102401]
  41. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, Kalavagunta PK, Liao J, Jin L, Shang J, Li J (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7(1):9. https://doi.org/10.1186/s40168-019-0628-3 [DOI: 10.1186/s40168-019-0628-3]
  42. ZENG Qi T L-F, LIU Yan-Ping, YAN Xiao-Xue, XU Wen-Qing (2021) Crystal structure of an O-acyltransfer terminal protein stDltD and its implications for dlt operon-mediated D-alanylation of S. thermophilus. Prog Biochem Biophys 1052–1062. https://doi.org/10.16476/j.pibb.2021.0020
  43. Sychantha D, Jones CS, Little DJ, Moynihan PJ, Robinson H, Galley NF, Roper DI, Dowson CG, Howell PL, Clarke AJ (2017) In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA). PLoS Pathog 13(10):e1006667. https://doi.org/10.1371/journal.ppat.1006667 [DOI: 10.1371/journal.ppat.1006667]
  44. Jee Y, Carlson J, Rafai E, Musonda K, Huong TTG, Daza P, Sattayawuthipong W, Yoon T (2018) Antimicrobial resistance: a threat to global health. Lancet Infect Dis 18(9):939–940. https://doi.org/10.1016/s1473-3099(18)30471-7 [DOI: 10.1016/s1473-3099(18)30471-7]
  45. Knipe H, Temperton B, Lange A, Bass D, and Tyler C (2021) Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Rev Aquac 13: 324–352. 13(324–352. https://doi.org/10.1111/raq.12477
  46. Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G (2024) Antimicrobial peptides derived from bacteria: classification, sources, and mechanism of action against multidrug-resistant bacteria. Int J Mol Sci 25(19):10788. https://doi.org/10.3389/fmicb.2020.582779 [DOI: 10.3389/fmicb.2020.582779]
  47. Kjos M, Snipen L, Salehian Z, Nes IF, Diep DB (2010) The abi proteins and their involvement in bacteriocin self-immunity. J Bacteriol 192(8):2068–2076. https://doi.org/10.1128/jb.01553-09 [DOI: 10.1128/jb.01553-09]
  48. Zhao H, Lee J, Chen J (2022) The hemolysin A secretion system is a multi-engine pump containing three ABC transporters. Cell 185(18):3329-3340.e13. https://doi.org/10.1016/j.cell.2022.07.017 [DOI: 10.1016/j.cell.2022.07.017]
  49. Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N (2024) A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 108(1):239. https://doi.org/10.1007/s00253-024-13065-x [DOI: 10.1007/s00253-024-13065-x]
  50. Wasfi R, Abd El‐Rahman O A, Zafer M M, and Ashour H M (2018) Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing Streptococcus mutans. J Cell Mol Med 22(3):1972–1983. https://doi.org/10.1111/jcmm.13496
  51. Zhang C, Zhang S, Liu W, Guo T, Gu R, Kong J (2019) Potential application and bactericidal mechanism of lactic acid-hydrogen peroxide consortium. Appl Biochem Biotechnol 189(3):822–833. https://doi.org/10.1007/s12010-019-03031-z [DOI: 10.1007/s12010-019-03031-z]
  52. Remund B, Yilmaz B, and Sokollik C (2023) D-Lactate: implications for gastrointestinal diseases. Children (Basel) 10(6): https://doi.org/10.3390/children10060945
  53. Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 75(11):3554–3563. https://doi.org/10.1128/aem.02919-08 [DOI: 10.1128/aem.02919-08]
  54. Joseph R, Ser H, Kuai Y, Tan L, Arasoo V, Letchumanan V (2021) Finding a balance in the vaginal microbiome: how do we treat and prevent the occurrence of bacterial vaginosis? Antibiotics (Basel) 10(6):719. https://doi.org/10.3390/antibiotics10060719 . (Multidisciplinary Digital Publishing Institute) [DOI: 10.3390/antibiotics10060719]
  55. Muzny CA, Łaniewski P, Schwebke JR, Herbst-Kralovetz MM (2020) Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis 33(1):59–65. https://doi.org/10.1097/qco.0000000000000620 [DOI: 10.1097/qco.0000000000000620]
  56. Madanchi H, Shoushtari M, Kashani HH, Sardari S (2020) Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect 34:100627. https://doi.org/10.1016/j.nmni.2019.100627 [DOI: 10.1016/j.nmni.2019.100627]

Grants

  1. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  2. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  3. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  4. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  5. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  6. No. 32100009/National Natural Science Foundation of China under Grant Agreement
  7. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement
  8. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement
  9. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement
  10. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement
  11. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement
  12. No. XMHT20220104017/Shenzhen Municipal Government of China under Grant Agreement

Word Cloud

Created with Highcharts 10.0.0OF44rhamnosusgenomeanalysisLacticaseibacillusCompletepotentialantimicrobialhumanhealthstudycompletevitrogeneoralsupplementactivityexhibitedgrowthpathogensclustersvaginalbacterialAntimicrobialextensivelystudiedstrainswidelyappliedenhancingcrucialfunctionalexplorationprobioticsaimedinvestigateLpromotephenotypicsequence2978769 bp2791CDSsaverageGCcontent47%experimentsdemonstratedbroadcarbonsourcefermentationcapacityResistancesimulateddigestiontestsconfirmedfavorabletoleranceharshconditionssuggestingpossessedvariousgenesrelatedbioactivesubstancespeptideslacticacidhydrogenperoxideexopolysaccharidesdetectedsignificantinhibitioncapacitiesgutvaginaskinmouthlikelyduehighco-aggregationmultiplepeptideadhesinAdditionallyadministrationfoundreducepHinflammationlevelsmicroenvironmentratsvaginosisThereforeprobioticpropertiesimprovingreproductivetractinfectionsmodulatingmicrobiotabalanceinhibitingpathogensummaryprovidednewperspectiveapplicationfoodpharmaceuticalfieldsPotentActivity:EvidenceGenomePhenotypicAnalysisPhenotype

Similar Articles

Cited By

No available data.