- Elena Salvi: The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK.
- Edwige Moyroud: The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK. ORCID
The corolla of flowering plants provides pivotal functions for the reproduction of angiosperms, directly impacting the fitness of individuals. Different petal shapes and patterns contribute to these functions and, thus, participate in the production of morphological diversity and the emergence of new species. During petal morphogenesis, the coordination of cell fate specification, cell division, and cell expansion is coherent and robust across the petal blade and is set according to proximo-distal, medio-lateral, and abaxial-adaxial axes. However, the mechanisms specifying petal polarity and controlling cell behavior in a position-dependent manner as petals develop remain poorly understood. In this review, we draw parallels with other evolutionarily related plant lateral organs such as leaves to argue that hormones likely play central, yet largely unexplored, roles in such coordination. By examining petal development in Arabidopsis and other angiosperms, we frame what are the knowns and the unknowns of hormones contributions to petal morphogenesis and patterning. Finally, we argue that using emerging model organisms can provide invaluable information to tackle questions that have long remained unanswered, broadening our understanding by allowing us to investigate petal morphogenesis and the tinkering of phytohormone signaling through an evolutionary lens.