Using a Bayesian network to classify time to return to sport based on football injury epidemiological data.

Kate K Y Yung, Paul P Y Wu, Karen Aus der F��nten, Anne Hecksteden, Tim Meyer
Author Information
  1. Kate K Y Yung: Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong. ORCID
  2. Paul P Y Wu: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
  3. Karen Aus der F��nten: Institute of Sports and Preventive Medicine, Saarland University, Saarbr��cken, Germany.
  4. Anne Hecksteden: Institute of Sports Science, University of Innsbruck, Innsbruck, Austria.
  5. Tim Meyer: Institute of Sports and Preventive Medicine, Saarland University, Saarbr��cken, Germany.

Abstract

The return-to-sport (RTS) process is multifaceted and complex, as multiple variables may interact and influence the time to RTS. These variables include intrinsic factors related the player, such as anthropometrics and playing position, or extrinsic factors, such as competitive pressure. Providing an individualised estimation of time to return to play is often challenging, and clinical decision support tools are not common in sports medicine. This study uses epidemiological data to demonstrate a Bayesian Network (BN). We applied a BN that integrated clinical, non-clinical factors, and expert knowledge to classify time day to RTS and injury severity (minimal, mild, moderate and severe) for individual players. Retrospective injury data of 3374 player seasons and 6143 time-loss injuries from seven seasons of the professional German football league (Bundesliga, 2014/2015 through 2020/2021) were collected from public databases and media resources. A total of twelve variables from three categories (player's characteristics and anthropometrics, match information and injury information) were included. The response variables were 1) days to RTS (1-3, 4-7, 8-14, 15-28, 29-60, >���60, and 2) injury severity (minimal, mild, moderate, and severe). The sensitivity of the model for days to RTS was 0.24-0.97, while for severity categories it was 0.73-1.00. The user's accuracy of the model for days to RTS was 0.52-0.83, while for severity categories, it was 0.67-1.00. The BN can help to integrate different data types to model the probability of an outcome, such as days to return to sport. In our study, the BN may support coaches and players in 1) predicting days to RTS given an injury, 2) team planning via assessment of scenarios based on players' characteristics and injury risk, and 3) understanding the relationships between injury risk factors and RTS. This study demonstrates the how a Bayesian network may aid clinical decision making for RTS.

References

  1. Sports Med Open. 2023 Mar 3;9(1):20 [PMID: 36867257]
  2. Br J Sports Med. 2011 Jun;45(7):553-8 [PMID: 19553225]
  3. J Orthop Sports Phys Ther. 2016 Apr;46(4):300-11 [PMID: 26954269]
  4. Front Psychol. 2018 Jul 06;9:1174 [PMID: 30034359]
  5. J Biomed Inform. 2008 Aug;41(4):515-29 [PMID: 18337188]
  6. Br J Sports Med. 2020 Jun;54(12):711-718 [PMID: 31171515]
  7. Sports Med Open. 2022 Feb 22;8(1):24 [PMID: 35192079]
  8. Sports Med. 2002;32(7):419-32 [PMID: 12015804]
  9. Sci Med Footb. 2022 Aug;6(3):389-397 [PMID: 35862155]
  10. Br J Sports Med. 2013 Apr;47(6):342-50 [PMID: 23080315]
  11. Vaccine. 2021 Dec 17;39(51):7429-7440 [PMID: 34810000]
  12. PLoS One. 2016 Apr 13;11(4):e0147311 [PMID: 27073897]
  13. Br J Sports Med. 2013 Aug;47(12):769-74 [PMID: 23645834]
  14. Br J Sports Med. 2016 Nov;50(21):1309-1314 [PMID: 27445362]
  15. Med Decis Making. 2015 May;35(4):539-57 [PMID: 25145577]
  16. Sports Med. 2022 Aug;52(8):1729-1735 [PMID: 35175575]
  17. Br J Sports Med. 2020 Apr;54(7):421-426 [PMID: 31182429]
  18. Psychol Rev. 1956 Mar;63(2):81-97 [PMID: 13310704]
  19. J Sports Sci. 2014;32(13):1229-36 [PMID: 24784885]
  20. Br J Sports Med. 2006 Mar;40(3):193-201 [PMID: 16505073]
  21. Methods Inf Med. 1992 Jun;31(2):106-16 [PMID: 1635462]
  22. Br J Sports Med. 2023 Nov;57(21):1341-1350 [PMID: 36609352]
  23. J Biomed Inform. 2014 Apr;48:106-13 [PMID: 24361388]
  24. Br J Sports Med. 2009 May;43(5):382-6 [PMID: 18927169]
  25. Nat Commun. 2017 Nov 2;8(1):1263 [PMID: 29093493]
  26. BMJ Open. 2019 Apr 24;9(4):e025611 [PMID: 31023756]
  27. Br J Sports Med. 2016 Jul;50(14):853-64 [PMID: 27226389]
  28. Behav Res Methods. 2019 Apr;51(2):589-601 [PMID: 30406507]
  29. Front Sports Act Living. 2022 Mar 17;4:793603 [PMID: 35368412]
  30. J Sci Med Sport. 2020 Jun;23(6):574-579 [PMID: 32008909]
  31. J Athl Train. 2014 Nov-Dec;49(6):786-93 [PMID: 25365132]
  32. Sports Med Open. 2023 Oct 14;9(1):94 [PMID: 37837528]
  33. Science. 1974 Sep 27;185(4157):1124-31 [PMID: 17835457]
  34. Br J Sports Med. 2024 Mar 8;58(5):241-243 [PMID: 38050063]
  35. BMJ. 2005 Apr 2;330(7494):765 [PMID: 15767266]
  36. Am J Sports Med. 2013 Feb;41(2):327-35 [PMID: 23263293]
  37. Sports Med Open. 2022 Apr 13;8(1):52 [PMID: 35416633]
  38. J Sports Med. 1974 Jan-Feb;2(1):22-6 [PMID: 4468319]
  39. Artif Intell Med. 2002 Jul;25(3):247-64 [PMID: 12069762]
  40. Br J Sports Med. 2015 Oct;49(19):1245-52 [PMID: 26036677]
  41. Sports Med Int Open. 2021 Mar 10;5(2):E37-E44 [PMID: 33718592]
  42. Sports Med Open. 2020 Jul 13;6(1):28 [PMID: 32661759]
  43. Br J Sports Med. 2002 Dec;36(6):436-41; discussion 441 [PMID: 12453838]
  44. Br J Sports Med. 2015 Oct;49(20):1311-5 [PMID: 26036678]
  45. Comput Methods Programs Biomed. 2016 Apr;126:128-42 [PMID: 26777431]

MeSH Term

Humans
Bayes Theorem
Return to Sport
Athletic Injuries
Soccer
Retrospective Studies
Male
Time Factors
Football
Germany

Word Cloud

Created with Highcharts 10.0.0RTSinjurydaysvariablestimefactorsdataBNseverity0mayreturnclinicalstudyBayesiancategoriesmodelplayeranthropometricsdecisionsupportepidemiologicalclassifyminimalmildmoderatesevereplayersseasonsfootballcharacteristicsinformation1200sportbasedrisknetworkreturn-to-sportprocessmultifacetedcomplexmultipleinteractinfluenceincludeintrinsicrelatedplayingpositionextrinsiccompetitivepressureProvidingindividualisedestimationplayoftenchallengingtoolscommonsportsmedicineusesdemonstrateNetworkappliedintegratednon-clinicalexpertknowledgedayindividualRetrospective33746143time-lossinjuriessevenprofessionalGermanleagueBundesliga2014/20152020/2021collectedpublicdatabasesmediaresourcestotaltwelvethreeplayer'smatchincludedresponse1-34-78-1415-2829-60>���60sensitivity24-09773-1user'saccuracy52-08367-1canhelpintegratedifferenttypesprobabilityoutcomecoachespredictinggiventeamplanningviaassessmentscenariosplayers'3understandingrelationshipsdemonstratesaidmakingUsing

Similar Articles

Cited By

No available data.