Synthetic biology in plants.

Takahiko Hayakawa, Hayato Suzuki, Hiroshi Yamamoto, Nobutaka Mitsuda
Author Information
  1. Takahiko Hayakawa: Mitsubishi Chemical Research Corporation, 16-1 Samon-cho, Sinjuku-ku, Tokyo 106-0017, Japan.
  2. Hayato Suzuki: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan.
  3. Hiroshi Yamamoto: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
  4. Nobutaka Mitsuda: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan.

Abstract

Synthetic biology, an interdisciplinary field at the intersection of engineering and biology, has garnered considerable attention for its potential applications in plant science. By exploiting engineering principles, synthetic biology enables the redesign and construction of biological systems to manipulate plant traits, metabolic pathways, and responses to environmental stressors. This review explores the evolution and current state of synthetic biology in plants, highlighting key achievements and emerging trends. Synthetic biology offers innovative solutions to longstanding challenges in agriculture and biotechnology for improvement of nutrition and photosynthetic efficiency, useful secondary metabolite production, engineering biosensors, and conferring stress tolerance. Recent advances, such as genome editing technologies, have facilitated precise manipulation of plant genomes, creating new possibilities for crop improvement and sustainable agriculture. Despite its transformative potential, ethical and biosafety considerations underscore the need for responsible deployment of synthetic biology tools in plant research and development. This review provides insights into the burgeoning field of plant synthetic biology, offering a glimpse into its future implications for food security, environmental sustainability, and human health.

Keywords

References

  1. Nature. 2019 Mar;567(7746):123-126 [PMID: 30814733]
  2. Science. 2017 Mar 10;355(6329):1040-1044 [PMID: 28280199]
  3. Sci Rep. 2017 Aug 1;7(1):7057 [PMID: 28765632]
  4. Mol Plant. 2018 Dec 3;11(12):1440-1448 [PMID: 30296601]
  5. J Med Chem. 1985 Jan;28(1):93-8 [PMID: 3965718]
  6. Plant Physiol. 2021 Feb 25;185(1):34-48 [PMID: 33631812]
  7. Front Bioeng Biotechnol. 2020 Apr 24;8:347 [PMID: 32391346]
  8. Commun Biol. 2019 Oct 18;2:384 [PMID: 31646187]
  9. Science. 2010 Jul 2;329(5987):52-6 [PMID: 20488990]
  10. Plant Physiol. 2003 Jun;132(2):578-96 [PMID: 12805589]
  11. Plant Cell Tissue Organ Cult. 2021;147(1):49-60 [PMID: 34776565]
  12. Nat Methods. 2024 Mar;21(3):406-410 [PMID: 38253843]
  13. Annu Rev Plant Biol. 2010;61:463-89 [PMID: 19152489]
  14. Cell. 2012 Jul 20;150(2):389-401 [PMID: 22817898]
  15. Plant Physiol. 2019 Mar;179(3):778-793 [PMID: 29991483]
  16. Mol Plant. 2017 Jul 5;10(7):918-929 [PMID: 28666688]
  17. Front Plant Sci. 2020 Jun 12;11:727 [PMID: 32595662]
  18. Science. 2016 Mar 25;351(6280):aad6253 [PMID: 27013737]
  19. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11495-500 [PMID: 17592141]
  20. New Phytol. 2013 Apr;198(2):442-452 [PMID: 23406468]
  21. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36 [PMID: 26124102]
  22. J Exp Bot. 2020 Jul 25;71(15):4591-4603 [PMID: 32267497]
  23. Synth Syst Biotechnol. 2016 Sep 04;1(4):258-264 [PMID: 29062951]
  24. Photosynth Res. 2023 Nov;158(2):121-130 [PMID: 37067631]
  25. Science. 2016 Nov 18;354(6314):900-904 [PMID: 27856910]
  26. Nat Chem Biol. 2024 Apr;20(4):493-502 [PMID: 38278997]
  27. J Nutr. 2002 Mar;132(3):506S-510S [PMID: 11880581]
  28. Plant Physiol. 2013 Mar;161(3):1066-75 [PMID: 23355633]
  29. Nat Commun. 2020 Oct 14;11(1):5174 [PMID: 33057059]
  30. Nat Methods. 2014 Apr;11(4):393-5 [PMID: 24509630]
  31. Plant Biotechnol J. 2014 Dec;12(9):1329-32 [PMID: 25196148]
  32. Antioxidants (Basel). 2020 Oct 20;9(10): [PMID: 33092051]
  33. Nat Commun. 2018 Sep 3;9(1):3570 [PMID: 30177711]
  34. Plant Physiol. 2018 Feb;176(2):1509-1518 [PMID: 29242378]
  35. Nat Commun. 2020 Nov 16;11(1):5664 [PMID: 33199711]
  36. Science. 2015 Sep 4;349(6252):1095-100 [PMID: 26272907]
  37. Plant Cell Physiol. 2018 Apr 1;59(4):778-791 [PMID: 29648666]
  38. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  39. Plant Physiol. 2016 Oct;172(2):707-717 [PMID: 27342312]
  40. Plant Physiol. 2019 Mar;179(3):844-861 [PMID: 30643013]
  41. Curr Opin Biotechnol. 2008 Apr;19(2):153-9 [PMID: 18374559]
  42. Foods. 2021 Aug 17;10(8): [PMID: 34441682]
  43. Foods. 2014 Feb 27;3(1):162-175 [PMID: 28234311]
  44. PLoS One. 2011 Jan 25;6(1):e16292 [PMID: 21283542]
  45. Hortic Res. 2020 Sep 19;7(1):152 [PMID: 33024566]
  46. Mol Plant. 2020 Nov 2;13(11):1570-1581 [PMID: 32882392]
  47. Science. 2012 Sep 28;337(6102):1628 [PMID: 22903519]
  48. Mol Plant. 2023 Oct 2;16(10):1547-1563 [PMID: 37660255]
  49. Plant Biotechnol (Tokyo). 2017;34(3):131-142 [PMID: 31275019]
  50. Plant J. 2011 Mar;65(6):922-35 [PMID: 21205028]
  51. Front Plant Sci. 2018 Apr 26;9:559 [PMID: 29755497]
  52. Plant Commun. 2020 Feb 13;1(2):100032 [PMID: 33367233]
  53. Nature. 2019 May;569(7757):514-518 [PMID: 31092918]
  54. Plant Physiol. 2004 Jan;134(1):510-9 [PMID: 14718674]
  55. Nat Biotechnol. 2007 May;25(5):593-9 [PMID: 17435746]
  56. Sci Rep. 2018 Jan 25;8(1):1582 [PMID: 29371612]
  57. Nat Biotechnol. 2008 Nov;26(11):1301-8 [PMID: 18953354]
  58. J Exp Bot. 2023 Jan 11;74(2):543-561 [PMID: 35849331]
  59. Biotechnol Adv. 2011 Nov-Dec;29(6):804-14 [PMID: 21729747]
  60. J Exp Bot. 2011 May;62(9):3103-8 [PMID: 21511901]
  61. Nature. 2022 Sep;609(7926):341-347 [PMID: 36045295]
  62. PNAS Nexus. 2023 Jan 10;2(2):pgac305 [PMID: 36743474]
  63. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4838-43 [PMID: 24639514]
  64. Cell. 2019 Nov 27;179(6):1255-1263.e12 [PMID: 31778652]
  65. J Exp Bot. 2019 Mar 11;70(5):1425-1433 [PMID: 30715460]
  66. J Plant Physiol. 2023 Jan;280:153899 [PMID: 36566670]
  67. Nature. 2014 Sep 25;513(7519):547-50 [PMID: 25231869]
  68. Cell. 2014 Nov 6;159(4):940-54 [PMID: 25417167]
  69. Plant Cell Physiol. 2007 Jul;48(7):948-57 [PMID: 17548374]
  70. Plant Biotechnol J. 2019 Apr;17(4):703-705 [PMID: 30485634]
  71. Semin Cell Dev Biol. 2024 Mar 1;155(Pt A):37-47 [PMID: 37085353]
  72. J Agric Food Chem. 2023 Nov 1;71(43):15926-15941 [PMID: 37856872]
  73. Nat Commun. 2018 Jan 31;9(1):448 [PMID: 29386648]
  74. New Phytol. 2022 Dec;236(5):1988-1998 [PMID: 36128658]
  75. Front Plant Sci. 2017 Mar 03;8:287 [PMID: 28316608]
  76. Nature. 2019 Dec;576(7785):149-157 [PMID: 31634902]
  77. Sci Rep. 2016 Mar 01;6:22284 [PMID: 26926260]
  78. Sci Rep. 2014 Apr 17;4:4722 [PMID: 24740007]
  79. Nature. 2022 Jul;607(7919):617-622 [PMID: 35794473]
  80. Nature. 2015 Apr 23;520(7548):545-8 [PMID: 25652827]
  81. Science. 2016 Nov 18;354(6314):857-861 [PMID: 27856901]
  82. J Integr Plant Biol. 2023 Feb;65(2):417-443 [PMID: 35852486]
  83. Nat Protoc. 2016 Apr;11(4):634-54 [PMID: 26938115]
  84. J Agric Food Chem. 2011 Nov 9;59(21):11803-11 [PMID: 21905736]
  85. J Biotechnol. 2022 Nov 20;359:1-14 [PMID: 36126804]
  86. PLoS One. 2020 Aug 12;15(8):e0237018 [PMID: 32785241]
  87. Food Sci Biotechnol. 2019 Feb 6;28(4):1187-1193 [PMID: 31275719]
  88. Plant J. 2014 Jan;77(2):198-208 [PMID: 24308505]
  89. Front Genome Ed. 2022 Jun 21;4:899154 [PMID: 35813972]
  90. Nature. 2019 Aug;572(7768):265-269 [PMID: 31341280]
  91. Biodes Res. 2020 Dec 5;2020:8051764 [PMID: 37849899]
  92. Nature. 2015 Feb 5;518(7537):89-93 [PMID: 25607356]
  93. Nat Biotechnol. 2020 Aug;38(8):944-946 [PMID: 32341562]
  94. Plant Cell Rep. 2021 Jun;40(6):1037-1045 [PMID: 32959126]
  95. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  96. Nat Plants. 2016 Feb 22;2:16012 [PMID: 27249347]
  97. Genes (Basel). 2018 Jul 06;9(7): [PMID: 29986428]
  98. Nano Lett. 2017 Dec 13;17(12):7951-7961 [PMID: 29148804]
  99. PLoS One. 2010 Nov 12;5(11):e15461 [PMID: 21103397]
  100. Nat Commun. 2018 Apr 20;9(1):1579 [PMID: 29679008]
  101. Plant Physiol. 2001 Apr;125(4):1558-66 [PMID: 11299337]
  102. Nat Biotechnol. 2020 May;38(5):582-585 [PMID: 32393904]
  103. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3922-E3931 [PMID: 29610307]
  104. Sci Rep. 2021 Jan 28;11(1):2496 [PMID: 33510272]
  105. Nat Chem Biol. 2020 Jul;16(7):740-748 [PMID: 32424305]
  106. Science. 2014 Apr 4;344(6179):55-8 [PMID: 24674868]
  107. Front Plant Sci. 2021 Aug 31;12:727118 [PMID: 34531888]
  108. Plant Biotechnol J. 2021 Mar;19(3):575-588 [PMID: 33016576]
  109. Science. 2019 Jan 4;363(6422): [PMID: 30606819]
  110. Trends Biotechnol. 2022 Jul;40(7):781-803 [PMID: 35120749]
  111. Proc Natl Acad Sci U S A. 2008 May 27;105(21):7393-8 [PMID: 18492807]
  112. Biodes Res. 2022 Jan 21;2022:9819314 [PMID: 37850130]
  113. Science. 2016 Apr 1;352(6281):aac7341 [PMID: 27034378]
  114. Trends Biotechnol. 2018 Sep;36(9):938-951 [PMID: 29685820]
  115. Science. 2018 Jul 13;361(6398):156-162 [PMID: 29853554]
  116. Nutrients. 2016 Jan 04;8(1): [PMID: 26742060]
  117. Nature. 2023 Mar;615(7953):720-727 [PMID: 36922599]
  118. Mol Biosyst. 2014 Jul;10(7):1679-88 [PMID: 24469598]
  119. Front Plant Sci. 2012 Feb 28;3:38 [PMID: 22639647]
  120. Nat Commun. 2023 Apr 25;14(1):2118 [PMID: 37185249]
  121. Plant Cell Rep. 1988 Dec;7(7):508-11 [PMID: 24240403]
  122. Science. 2013 Oct 18;342(6156):357-60 [PMID: 24136966]
  123. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25890-25896 [PMID: 32989135]
  124. Biotechnol Biofuels. 2018 Sep 20;11:257 [PMID: 30250509]
  125. Science. 2017 Apr 28;356(6336):438-442 [PMID: 28408723]
  126. mBio. 2017 Jun 6;8(3): [PMID: 28588129]
  127. Plant Commun. 2021 Aug 09;2(5):100229 [PMID: 34746761]
  128. Nat Commun. 2019 Aug 12;10(1):3634 [PMID: 31406117]
  129. Annu Rev Plant Biol. 2012;63:19-47 [PMID: 22404472]
  130. Front Plant Sci. 2016 Feb 29;7:185 [PMID: 26973659]
  131. Nature. 2010 Jan 21;463(7279):301-2 [PMID: 20090739]
  132. Mol Biotechnol. 2021 Dec;63(12):1138-1154 [PMID: 34420149]
  133. Eng Biol. 2022 Nov 30;6(4):71-81 [PMID: 36968339]
  134. Science. 2011 Oct 14;334(6053):238-41 [PMID: 21998392]
  135. Sci Rep. 2019 Nov 1;9(1):15831 [PMID: 31676875]
  136. Plant Cell Physiol. 2024 Feb 15;65(2):185-198 [PMID: 38153756]
  137. Nat Biotechnol. 2005 Apr;23(4):482-7 [PMID: 15793573]
  138. Front Plant Sci. 2023 Jun 29;14:1132555 [PMID: 37457343]
  139. Microb Cell Fact. 2016 Dec 7;15(1):207 [PMID: 27923373]
  140. J Exp Bot. 2020 Apr 6;71(7):2219-2225 [PMID: 32060550]
  141. Nature. 2023 Nov 8;: [PMID: 37940692]
  142. Nature. 2013 Apr 25;496(7446):528-32 [PMID: 23575629]
  143. Science. 2020 May 8;368(6491):649-654 [PMID: 32381722]
  144. Plant J. 2020 Feb;101(4):940-950 [PMID: 31596523]
  145. Nat Commun. 2011;2:326 [PMID: 21610729]
  146. Plant Cell. 2006 Aug;18(8):2035-50 [PMID: 16829589]
  147. Front Plant Sci. 2019 Jul 25;10:912 [PMID: 31404271]
  148. Front Pharmacol. 2022 Jul 01;13:905755 [PMID: 35847041]
  149. Nature. 2021 Oct;598(7882):662-666 [PMID: 34616044]
  150. PLoS Comput Biol. 2023 Feb 2;19(2):e1010884 [PMID: 36730434]
  151. Microb Cell Fact. 2019 May 28;18(1):95 [PMID: 31138208]
  152. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12728-12732 [PMID: 30478037]
  153. Nature. 2017 Apr 26;544(7651):S8-S10 [PMID: 28445449]
  154. Sci Rep. 2018 Jun 8;8(1):8792 [PMID: 29884789]

Word Cloud

Created with Highcharts 10.0.0biologyplantsyntheticSyntheticengineeringplantsfieldpotentialenvironmentalreviewagricultureimprovementsecondaryinterdisciplinaryintersectiongarneredconsiderableattentionapplicationsscienceexploitingprinciplesenablesredesignconstructionbiologicalsystemsmanipulatetraitsmetabolicpathwaysresponsesstressorsexploresevolutioncurrentstatehighlightingkeyachievementsemergingtrendsoffersinnovativesolutionslongstandingchallengesbiotechnologynutritionphotosyntheticefficiencyusefulmetaboliteproductionbiosensorsconferringstresstoleranceRecentadvancesgenomeeditingtechnologiesfacilitatedprecisemanipulationgenomescreatingnewpossibilitiescropsustainableDespitetransformativeethicalbiosafetyconsiderationsunderscoreneedresponsibledeploymenttoolsresearchdevelopmentprovidesinsightsburgeoningofferingglimpsefutureimplicationsfoodsecuritysustainabilityhumanhealthlignocelluloseluminescentphotosynthesismetabolites

Similar Articles

Cited By