Impact of AID on Glycemic Profile and Maternal/Neonatal Outcomes in Pregnancy: A Review of the Evidence From Observational Studies.

Nasim C Sobhani
Author Information
  1. Nasim C Sobhani: Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA. ORCID

Abstract

The mainstay of type 1 diabetes (T1D) management in pregnancy is optimization of glucose levels in a tight range. Achieving euglycemia has been revolutionized by advances in diabetes technology, including the development of automated insulin delivery (AID) systems. A small but growing population of gravidas with T1D elects to pursue off-label use of AID systems in pregnancy, and their outcomes have been described in numerous observational cohorts. This review aims to aggregate data from all available observational studies examining glycemic, maternal, and neonatal outcomes associated with antenatal AID use. A total of 243 pregnancies managed antenatally with AID were described in 24 publications, with largely reassuring outcomes data. Time in range (TIR) with commercial AID systems was generally acceptable, with many patients reaching pregnancy target TIR > 70% by the third trimester. Time in range with open-source AID systems appeared even higher, although with the potential tradeoff of worse time below range (TBR). Clinically, there do not appear to be major differences in pregnancy outcomes between AID systems and other methods of insulin delivery, although this assumption is based largely on indirect comparisons with other population-level reports rather than direct comparisons within analytic observational cohorts. Clinical outcomes appear superior with open-source AID compared with commercial AID, although this should be interpreted with caution based on the small sample size of this subpopulation (n = 16) and potential confounding. The real-world evidence generated by these observational studies provides invaluable information for patients and providers seeking to improve outcomes for gravidas with T1D.

Keywords

References

  1. J Diabetes Complications. 2024 Aug;38(8):108795 [PMID: 38878423]
  2. Lancet Diabetes Endocrinol. 2021 Mar;9(3):153-164 [PMID: 33516295]
  3. Diabetes Technol Ther. 2022 Sep;24(9):672-674 [PMID: 35604800]
  4. Can J Diabetes. 2023 Jul;47(5):381-388 [PMID: 37532365]
  5. touchREV Endocrinol. 2024 Oct;20(2):110-118 [PMID: 39526053]
  6. J Matern Fetal Neonatal Med. 2022 Nov;35(21):4208-4220 [PMID: 33722149]
  7. Case Rep Endocrinol. 2021 Sep 21;2021:7310176 [PMID: 34594581]
  8. BMJ Case Rep. 2021 Sep 17;14(9): [PMID: 34535491]
  9. J Diabetes Sci Technol. 2020 Sep;14(5):972-973 [PMID: 32059616]
  10. Diabetes Technol Ther. 2023 Jul;25(7):516-518 [PMID: 36930146]
  11. Diabetes Care. 2023 Jul 1;46(7):1425-1431 [PMID: 37196353]
  12. Front Cardiovasc Med. 2019 Oct 09;6:147 [PMID: 31649935]
  13. JAMA Intern Med. 2024 Jun 1;184(6):631-640 [PMID: 38619848]
  14. AACE Clin Case Rep. 2021 Jan 06;7(3):177-179 [PMID: 34095482]
  15. J Matern Fetal Neonatal Med. 2013 Nov;26(17):1682-6 [PMID: 23570252]
  16. J Diabetes Sci Technol. 2024 Nov;18(6):1509-1510 [PMID: 39254102]
  17. Acta Diabetol. 2024 Sep;61(9):1185-1194 [PMID: 38849658]
  18. Lancet Diabetes Endocrinol. 2022 Jan;10(1):58-74 [PMID: 34785000]
  19. Diabetes Care. 2025 Jan 1;48(Supplement_1):S146-S166 [PMID: 39651978]
  20. Diabetes Res Clin Pract. 2023 Aug;202:110800 [PMID: 37364659]
  21. J Clin Med. 2020 Feb 21;9(2): [PMID: 32098048]
  22. Diabetes Technol Ther. 2022 Jul;24(7):471-480 [PMID: 35230138]
  23. J Clin Med. 2024 Mar 01;13(5): [PMID: 38592281]
  24. JAMA. 2018 Sep 4;320(9):867-868 [PMID: 30105359]
  25. Diabetes Technol Ther. 2024 Aug;26(8):596-606 [PMID: 38417014]
  26. Obstet Gynecol. 2019 Dec;134(6):1227-1233 [PMID: 31764733]
  27. Can J Diabetes. 2021 Dec;45(8):804-808.e2 [PMID: 33648862]
  28. Diabetes Res Clin Pract. 2024 Nov;217:111902 [PMID: 39442806]
  29. Diabetes Res Clin Pract. 2023 Jun;200:110713 [PMID: 37187225]
  30. Heart. 2019 Aug;105(16):1273-1278 [PMID: 31175138]
  31. Metabolites. 2022 Nov 18;12(11): [PMID: 36422278]
  32. J Diabetes Sci Technol. 2019 Jul;13(4):790-793 [PMID: 30348013]
  33. Cureus. 2024 Jan 16;16(1):e52369 [PMID: 38361690]
  34. PLoS Med. 2019 Oct 1;16(10):e1002926 [PMID: 31574092]
  35. Diabetes Technol Ther. 2023 Dec;25(12):893-901 [PMID: 37956265]
  36. Diabetes Care. 2022 Dec 1;45(12):3058-3074 [PMID: 36202061]
  37. J Diabetes Sci Technol. 2023 Jul;17(4):1126-1128 [PMID: 37062960]
  38. Am J Obstet Gynecol. 2017 Sep;217(3):237-248.e16 [PMID: 28708975]
  39. Diabetes Care. 2019 Aug;42(8):1593-1603 [PMID: 31177185]
  40. Diabet Med. 2023 Jun;40(6):e15086 [PMID: 36924086]
  41. Diabetes Technol Ther. 2022 Mar;24(3):227-230 [PMID: 34542371]
  42. Diabetes Metab Res Rev. 2020 Mar;36(3):e3248 [PMID: 31758630]
  43. BJOG. 2021 Oct;128(11):1855-1868 [PMID: 34218508]
  44. N Engl J Med. 2016 Dec 8;375(23):2293-2297 [PMID: 27959688]

Word Cloud

Created with Highcharts 10.0.0AIDoutcomessystemspregnancyrangeobservationaldiabetesT1DalthoughinsulindeliverysmallgravidasusedescribedcohortsdatastudieslargelyTimeTIRcommercialpatientsopen-sourcepotentialappearbasedcomparisonsmainstaytype1managementoptimizationglucoselevelstightAchievingeuglycemiarevolutionizedadvancestechnologyincludingdevelopmentautomatedgrowingpopulationelectspursueoff-labelnumerousreviewaimsaggregateavailableexaminingglycemicmaternalneonatalassociatedantenataltotal243pregnanciesmanagedantenatally24publicationsreassuringgenerallyacceptablemanyreachingtarget>70%thirdtrimesterappearedevenhighertradeoffworsetimeTBRClinicallymajordifferencesmethodsassumptionindirectpopulation-levelreportsratherdirectwithinanalyticClinicalsuperiorcomparedinterpretedcautionsamplesizesubpopulationn=16confoundingreal-worldevidencegeneratedprovidesinvaluableinformationprovidersseekingimproveImpactGlycemicProfileMaternal/NeonatalOutcomesPregnancy:ReviewEvidenceObservationalStudiesartificialpancreasclosedloopperinatal

Similar Articles

Cited By