Brain tumor segmentation using multi-scale attention U-Net with EfficientNetB4 encoder for enhanced MRI analysis.

Preetha R, Jasmine Pemeena Priyadarsini M, Nisha J S
Author Information
  1. Preetha R: School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.
  2. Jasmine Pemeena Priyadarsini M: School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India. jasmin@vit.ac.in.
  3. Nisha J S: School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.

Abstract

Accurate brain tumor segmentation is critical for clinical diagnosis and treatment planning. This study proposes an advanced segmentation framework that combines Multiscale Attention U-Net with the EfficientNetB4 encoder to enhance segmentation performance. Unlike conventional U-Net-based architectures, the proposed model leverages EfficientNetB4's compound scaling to optimize feature extraction at multiple resolutions while maintaining low computational overhead. Additionally, the Multi-Scale Attention Mechanism (utilizing [Formula: see text], and [Formula: see text] kernels) enhances feature representation by capturing tumor boundaries across different scales, addressing limitations of existing CNN-based segmentation methods. Our approach effectively suppresses irrelevant regions and enhances tumor localization through attention-enhanced skip connections and residual attention blocks. Extensive experiments were conducted on the publicly available Figshare brain tumor dataset, comparing different EfficientNet variants to determine the optimal architecture. EfficientNetB4 demonstrated superior performance, achieving an Accuracy of 99.79%, MCR of 0.21%, Dice Coefficient of 0.9339, and an Intersection over Union (IoU) of 0.8795, outperforming other variants in accuracy and computational efficiency. The training process was analyzed using key metrics, including Dice Coefficient, dice loss, precision, recall, specificity, and IoU, showing stable convergence and generalization. Additionally, the proposed method was evaluated against state-of-the-art approaches, surpassing them in all critical metrics, including accuracy, IoU, Dice Coefficient, precision, recall, specificity, and mean IoU. This study demonstrates the effectiveness of the proposed method for robust and efficient segmentation of brain tumors, positioning it as a valuable tool for clinical and research applications.

Keywords

References

  1. Comput Biol Med. 2025 Feb;185:109503 [PMID: 39647242]
  2. IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169 [PMID: 34722958]
  3. Neuro Oncol. 2023 Oct 4;25(12 Suppl 2):iv1-iv99 [PMID: 37793125]
  4. Healthcare (Basel). 2021 Feb 02;9(2): [PMID: 33540873]
  5. J Healthc Eng. 2018 Mar 19;2018:4940593 [PMID: 29755716]
  6. Sci Rep. 2021 May 25;11(1):10930 [PMID: 34035406]
  7. BMC Med Inform Decis Mak. 2023 Jan 23;23(1):16 [PMID: 36691030]
  8. Bioengineering (Basel). 2024 Dec 23;11(12): [PMID: 39768120]
  9. Comput Med Imaging Graph. 2023 Dec;110:102313 [PMID: 38011781]
  10. Insights Imaging. 2018 Aug;9(4):611-629 [PMID: 29934920]
  11. Microsc Res Tech. 2018 Apr;81(4):419-427 [PMID: 29356229]
  12. Sci Rep. 2023 Nov 2;13(1):18911 [PMID: 37919354]
  13. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  14. Diagnostics (Basel). 2023 Sep 20;13(18): [PMID: 37761373]
  15. Phys Med Biol. 2022 Apr 11;67(8): [PMID: 35299156]
  16. Diagnostics (Basel). 2023 Feb 03;13(3): [PMID: 36766681]
  17. J Med Syst. 2018 Oct 8;42(11):226 [PMID: 30298337]
  18. Sci Rep. 2023 Dec 27;13(1):23029 [PMID: 38155247]

MeSH Term

Humans
Brain Neoplasms
Magnetic Resonance Imaging
Neural Networks, Computer
Image Processing, Computer-Assisted
Algorithms
Image Interpretation, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0tumorsegmentationIoUbrainU-NetEfficientNetB4proposed0DiceCoefficientcriticalclinicalstudyAttentionencoderperformancefeaturecomputationalAdditionally[Formula:seetext]enhancesdifferentattentionEfficientNetvariantsaccuracyusingmetricsincludingprecisionrecallspecificitymethodBrainMRIAccuratediagnosistreatmentplanningproposesadvancedframeworkcombinesMultiscaleenhanceUnlikeconventionalU-Net-basedarchitecturesmodelleveragesEfficientNetB4'scompoundscalingoptimizeextractionmultipleresolutionsmaintaininglowoverheadMulti-ScaleMechanismutilizingkernelsrepresentationcapturingboundariesacrossscalesaddressinglimitationsexistingCNN-basedmethodsapproacheffectivelysuppressesirrelevantregionslocalizationattention-enhancedskipconnectionsresidualblocksExtensiveexperimentsconductedpubliclyavailableFigsharedatasetcomparingdetermineoptimalarchitecturedemonstratedsuperiorachievingAccuracy9979%MCR21%9339IntersectionUnion8795outperformingefficiencytrainingprocessanalyzedkeydicelossshowingstableconvergencegeneralizationevaluatedstate-of-the-artapproachessurpassingmeandemonstrateseffectivenessrobustefficienttumorspositioningvaluabletoolresearchapplicationsmulti-scaleenhancedanalysisDeeplearningDLMagneticresonanceimagingSegmentation

Similar Articles

Cited By