Isolation, characterization, and genomic analysis of a novel bacteriophage vB_Kp_XP4 targeting hypervirulent and multidrug-resistant .

Xiaocui Peng, Jianliang Chang, Hongxia Zhang, Xiaoyu Li, Changhong Zhang, Shiyan Jiao, Chengxiu Lv, Na Wang, Jun Zhao, Bu Wang, Wei Zhang, Zhihua Zhang
Author Information
  1. Xiaocui Peng: Department of Postgraduate, Hebei North University, Zhangjiakou, China.
  2. Jianliang Chang: Department of Postgraduate, Hebei North University, Zhangjiakou, China.
  3. Hongxia Zhang: Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
  4. Xiaoyu Li: Department of Postgraduate, Hebei North University, Zhangjiakou, China.
  5. Changhong Zhang: Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
  6. Shiyan Jiao: Department of Postgraduate, Hebei North University, Zhangjiakou, China.
  7. Chengxiu Lv: Department of Clinical Laboratory, Zibo First Hospital, Zibo, China.
  8. Na Wang: Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
  9. Jun Zhao: Department of Postgraduate, Hebei North University, Zhangjiakou, China.
  10. Bu Wang: Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
  11. Wei Zhang: Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
  12. Zhihua Zhang: Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.

Abstract

Introduction: Hypervirulent and multidrug-resistant (hvKP and MDR-KP) are significant public health threats. This study aimed to isolate a lytic bacteriophage targeting these high-risk strains, systematically characterize its biological properties, genomic features, and therapeutic efficacy, and establish a foundation for clinical phage therapy and novel antimicrobial development.
Methods: The phage vB_Kp_XP4 was isolated from river water using the double-layer agar plate method with the clinically isolated strain P4 as the host. Morphology was analyzed via transmission electron microscopy (TEM). Host range, pH, and thermal stability were assessed using spot assays and OD measurements. One-step growth curves determined the latent period and burst size. Whole-genome sequencing and phylogenetic analysis were performed. Therapeutic efficacy and safety were evaluated in a infection model.
Results: TEM revealed Phage vB_Kp_XP4 as a tailed phage with an icosahedral head and a long, flexible tail. It lysed an hvKP strain (carrying , , , genes) and an MDR-KP strain (resistant to carbapenems, fluoroquinolones, etc.), with an optimal MOI of 0.1 and latent period <10 minutes. Stability was maintained at pH 4-11 and ���70��C. Whole-genome sequencing revealed a linear double-stranded DNA genome of 44,344 bp with a G+C content of 53.80%. The genome comprised 54 coding sequences and lacked lysogenic, virulence, or antibiotic resistance genes. Phylogenetic analysis positioned phage vB_Kp_XP4 as a novel species within the genus , family . In the model, vB_Kp_XP4 prolonged survival of P4-infected larvae ( < 0.001).
Conclusion: Phage vB_Kp_XP4 exhibits high stability, specificity, potent lytic activity, and no undesirable genes, demonstrating effective in vivo therapeutic efficacy, suggest its potential for clinical applications against infections. The presence of multiple halos during plaque formation further enhances its research value. The complete genome sequence has been submitted to GenBank under accession number PP663283.

Keywords

References

  1. Bioinformatics. 2012 Mar 1;28(5):614-8 [PMID: 22238260]
  2. BMC Bioinformatics. 2018 Sep 15;19(1):326 [PMID: 30219026]
  3. Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):393-410 [PMID: 39018352]
  4. Elife. 2022 Feb 21;11: [PMID: 35188102]
  5. Viruses. 2022 Feb 08;14(2): [PMID: 35215934]
  6. Clin Microbiol Infect. 2024 Jun;30(6):787-794 [PMID: 38522841]
  7. Int J Mol Sci. 2024 Aug 01;25(15): [PMID: 39125995]
  8. Arch Virol. 2023 Jun 10;168(7):175 [PMID: 37296227]
  9. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  10. Front Microbiol. 2023 Jan 30;14:1081715 [PMID: 36793879]
  11. Virus Res. 2024 Sep;347:199417 [PMID: 38880333]
  12. Phage (New Rochelle). 2022 Jun 1;3(2):112-115 [PMID: 36157289]
  13. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  14. Clin Microbiol Rev. 2019 Jan 16;32(2): [PMID: 30651225]
  15. mSphere. 2024 Jul 30;9(7):e0070723 [PMID: 38934592]
  16. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  17. Ann Clin Microbiol Antimicrob. 2023 Feb 24;22(1):18 [PMID: 36829156]
  18. Mol Biol Evol. 2021 Dec 9;38(12):5825-5829 [PMID: 34597405]
  19. Arch Virol. 2020 Dec;165(12):2799-2806 [PMID: 32989574]
  20. Clin Infect Dis. 2023 Nov 2;77(Suppl 5):S337-S351 [PMID: 37932122]
  21. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  22. Front Cell Infect Microbiol. 2023 Jan 23;13:1077995 [PMID: 36756618]
  23. mSphere. 2022 Apr 27;7(2):e0008022 [PMID: 35255715]
  24. Virol Sin. 2023 Oct;38(5):801-812 [PMID: 37419417]
  25. Nat Microbiol. 2024 Jun;9(6):1434-1453 [PMID: 38834776]
  26. J Infect Dis. 2014 Dec 1;210(11):1734-44 [PMID: 25001459]
  27. Notes Rec R Soc Lond. 2020 Dec 20;74(4):579-597 [PMID: 33177748]
  28. J Hist Med Allied Sci. 1993 Jul;48(3):275-301 [PMID: 8409365]
  29. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  30. mBio. 2020 Jan 28;11(1): [PMID: 31992617]
  31. Front Cell Infect Microbiol. 2017 Nov 21;7:483 [PMID: 29209595]
  32. Sci Bull (Beijing). 2023 Nov 15;68(21):2658-2670 [PMID: 37821268]
  33. Curr Opin Virol. 2022 Feb;52:182-191 [PMID: 34952266]
  34. Nucleic Acids Res. 2023 Jan 6;51(D1):D678-D689 [PMID: 36350631]
  35. Bacteriol Rev. 1976 Dec;40(4):793-802 [PMID: 795414]
  36. Microbiol Spectr. 2023 Feb 14;11(1):e0403022 [PMID: 36700630]
  37. Virol Sin. 2015 Feb;30(1):80-1 [PMID: 25662889]
  38. Nat Rev Microbiol. 2022 Jan;20(1):49-62 [PMID: 34373631]
  39. Clin Infect Dis. 2023 Oct 16;77(Suppl 4):S321-S330 [PMID: 37843122]
  40. Crit Rev Microbiol. 2024 Sep;50(5):702-727 [PMID: 37861086]
  41. Adv Drug Deliv Rev. 2022 Aug;187:114378 [PMID: 35671882]
  42. Int J Antimicrob Agents. 2024 Aug;64(2):107221 [PMID: 38810938]
  43. Genome Res. 2017 May;27(5):824-834 [PMID: 28298430]
  44. Nucleic Acids Res. 2022 Jan 7;50(D1):D912-D917 [PMID: 34850947]
  45. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  46. J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500 [PMID: 32780112]
  47. Infect Dis (Lond). 2024 Oct;56(10):785-817 [PMID: 39017931]
  48. Lancet Glob Health. 2024 Feb;12(2):e201-e216 [PMID: 38134946]
  49. J Hosp Infect. 2015 Jan;89(1):16-27 [PMID: 25447198]
  50. J Glob Antimicrob Resist. 2021 Jun;25:26-34 [PMID: 33667703]
  51. Nat Rev Microbiol. 2020 Mar;18(3):125-138 [PMID: 32015529]
  52. Clin Infect Dis. 2023 Nov 2;77(Suppl 5):S352-S359 [PMID: 37932119]
  53. Cell Rep. 2023 Feb 28;42(2):112048 [PMID: 36753420]
  54. Microorganisms. 2021 Oct 28;9(11): [PMID: 34835377]
  55. Viruses. 2023 Sep 30;15(10): [PMID: 37896809]
  56. Curr Opin Biotechnol. 2021 Apr;68:151-159 [PMID: 33310655]
  57. Curr Med Chem. 2015;22(14):1757-73 [PMID: 25666799]
  58. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  59. Antimicrob Agents Chemother. 2024 Jun 5;68(6):e0142923 [PMID: 38742895]
  60. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  61. Front Microbiol. 2024 May 09;15:1397830 [PMID: 38784808]
  62. Microbiol Spectr. 2024 Jan 11;12(1):e0125823 [PMID: 38018985]
  63. Front Cell Infect Microbiol. 2019 Feb 18;9:22 [PMID: 30834237]
  64. Methods Mol Biol. 2009;501:175-202 [PMID: 19066822]
  65. Front Microbiol. 2024 Jan 05;14:1320345 [PMID: 38249486]
  66. J Mol Biol. 2007 Nov 9;373(5):1098-112 [PMID: 17900620]
  67. PLoS One. 2015 Mar 11;10(3):e0118557 [PMID: 25761060]
  68. Antimicrob Agents Chemother. 2023 May 17;67(5):e0151922 [PMID: 37098944]
  69. Front Cell Infect Microbiol. 2021 Dec 06;11:758392 [PMID: 34938668]
  70. Viruses. 2023 Apr 21;15(4): [PMID: 37113000]
  71. Virus Res. 2018 Jan 2;243:10-18 [PMID: 28988127]
  72. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  73. Virulence. 2013 Feb 15;4(2):107-18 [PMID: 23302790]
  74. Adv Virus Res. 2012;83:73-121 [PMID: 22748809]
  75. Comput Appl Biosci. 1992 Jun;8(3):275-82 [PMID: 1633570]
  76. Viruses. 2019 Apr 12;11(4): [PMID: 31013833]
  77. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]
  78. Adv Virus Res. 2019;103:33-70 [PMID: 30635077]
  79. Curr Microbiol. 2020 May;77(5):722-729 [PMID: 31912220]
  80. Bull N Y Acad Med. 1931 May;7(5):329-48 [PMID: 19311785]

Word Cloud

Created with Highcharts 10.0.0vB_Kp_XP4phageefficacynovelstrainsequencinganalysisgenesgenomemultidrug-resistanthvKPMDR-KPlyticbacteriophagetargetingbiologicalgenomictherapeuticclinicaltherapyisolatedusingTEMpHstabilitylatentperiodWhole-genomemodelrevealedPhage0resistanceIntroduction:Hypervirulentsignificantpublichealththreatsstudyaimedisolatehigh-riskstrainssystematicallycharacterizepropertiesfeaturesestablishfoundationantimicrobialdevelopmentMethods:riverwaterdouble-layeragarplatemethodclinicallyP4hostMorphologyanalyzedviatransmissionelectronmicroscopyHostrangethermalassessedspotassaysODmeasurementsOne-stepgrowthcurvesdeterminedburstsizephylogeneticperformedTherapeuticsafetyevaluatedinfectionResults:tailedicosahedralheadlongflexibletaillysedcarryingresistantcarbapenemsfluoroquinolonesetcoptimalMOI1<10minutesStabilitymaintained4-11���70��Clineardouble-strandedDNA44344bpG+Ccontent5380%comprised54codingsequenceslackedlysogenicvirulenceantibioticPhylogeneticpositionedspecieswithingenusfamilyprolongedsurvivalP4-infectedlarvae<001Conclusion:exhibitshighspecificitypotentactivityundesirabledemonstratingeffectivevivosuggestpotentialapplicationsinfectionspresencemultiplehalosplaqueformationenhancesresearchvaluecompletesequencesubmittedGenBankaccessionnumberPP663283IsolationcharacterizationhypervirulentKlebsiellapneumoniaecharacteristicshypervirulencemultidrugwhole-genome

Similar Articles

Cited By